李栋梁 1,2蔡红星 1,2,*任玉 1,2李霜 1,2[ ... ]张桁源 1,2
作者单位
摘要
1 长春理工大学物理学院,吉林 长春 130022
2 长春理工大学吉林省光谱探测科学与技术重点实验室,吉林 长春 130022
3 吉林求是光谱数据科技有限公司,吉林 长春 130000
目前的显微光谱成像系统的探测模块主要以推扫型光谱成像仪为主,无法进行动态微观样本的观测。基于超材料宽谱调制型光谱成像技术体制,使用该原理研制的快照式光谱相机作为探测模块,其与显微镜模块形成新型的快照式显微光谱成像系统。该系统可实时获取样本的光谱曲线与光谱图像信息。同时利用该系统获取不同藻类的吸收光谱曲线,进一步使用基于支持向量机的图像分割识别算法,对水中的动态藻类样本进行识别。共测试样本80个,预测结果准确率为100%,召回率为65.52%,为快照式光谱成像技术在显微领域的应用奠定基础。
显微镜 光谱成像 快照式 吸收光谱 目标识别 
激光与光电子学进展
2024, 61(6): 0618023
作者单位
摘要
1 长春理工大学物理学院, 吉林 长春 130022 白城师范学院, 吉林 白城 137000
2 长春理工大学物理学院, 吉林 长春 130022
3 宇航动力学国家重点实验室, 陕西 西安 710043
4 中国科学院天文台长春人造卫星观测站, 吉林 长春 130117
5 光电对抗测试评估技术重点实验室, 河南 洛阳 471000
空间目标由于距地相对较远, 且散射光信号受到大气介质的强散射, 在地基测量中很难获取到目标的准确信息。 近年来光谱观测技术蓬勃发展, 由此为空间目标测量提供了新的方案, 但在采集的目标光谱信息中, 由于目标轨道高度、 材料组成等大多相近, 很难直接从光谱曲线中分辨出目标。 为此基于双向反射分布函数(BRDF)散射理论, 建立了空间目标散射光谱成像模型, 并由1.2 m口径地基观测平台与光谱视频成像系统实验测量了一组高轨道同步卫星(GEO)目标, 光谱范围为400~720 nm, 光谱分辨率为2 nm。 采用径向基神经网络算法对光谱数据中的BRDF进行解混, 实验测量了六种空间目标典型材料的BRDF。 由于目标相对较远, 已经超出探测系统的衍射极限, 因此目标可视为点目标, 但在地基测量中大气层是阻隔在探测系统和目标之间的重要屏障, 目标光信号穿过大气层时会受到大气介质的强烈散射, 这种散射虽然很大程度上削弱了光信号, 但同时光信号也被按原结构放大。 依据光学记忆效应, 目标光信号穿过均匀大气介质后其结构仍保持不变。 基于以上分析, 目标光斑图像应该保留有目标投影结构的信息。 为此采用针对目标光斑图像纹理区域分割反演的方法, 将目标光斑划分为10个纹理区域, 并提取对应光谱数据。 通过探测系统传递函数标定以及减噪处理, 获得了观测时段在轨目标空间几何角度下的光谱曲线。 再利用建立的典型材料光谱数据库进行拟合反演。 结果表明: 在2号、 5号、 10号纹理区域反演出了区别于其他区域不同的材料类型。 同时, 反演的各纹理区的材料面积比也有较大不同。 为进一步评估拟合结果, 采用非奇异矩阵对拟合效果进行评价, 分析了扰动方程, 拟合准确率最高为85.283 3, 最低为76.982 7。 这说明拟合结果是相对真实的, 目标散斑图像中含有可分辨的目标投影结构信息。 此研究为揭开点目标成像探测和散斑图像结构识别提供了新的方向。
空间目标 散射光谱成像 光谱反演 Space object Scattering spectral imaging Spectral inversi 
光谱学与光谱分析
2023, 43(10): 3023
王婷婷 1,2,*蔡红星 1,2,**李霜 1,2任玉 1,2[ ... ]曲冠男 1,2
作者单位
摘要
1 长春理工大学物理学院,吉林 长春 130022
2 长春理工大学吉林省光谱探测科学与技术重点实验室,吉林 长春 130022
光谱成像具有良好的多维信息获取能力,广泛应用在食品安全、医学诊断、环境监测、伪装识别及**遥感等领域。传统光谱成像系统受到分光器件的限制,其存在体积大、成本高和集成度低等问题。基于新型超构表面的成像光谱芯片可为传感器小型化、低成本提供有效解决方案。随着光谱分析需求的持续攀升,加速了超构表面成像光谱芯片的快速发展。本文综述了近年来超构表面成像光谱芯片研究进展。在此基础上,介绍了本团队最新研究成果,通过创新设计成像光谱芯片体系架构,可同时实现高能量利用率、高空间分辨率、高光谱分辨率,为芯片级光谱成像系统的应用打下良好的基础。最后论述了成像光谱芯片的发展趋势及应用前景,为实现光谱成像系统小型化提供参考。
集成光学器件 成像光谱芯片 超构表面 分光器件 
激光与光电子学进展
2023, 60(11): 1106014
作者单位
摘要
长春理工大学 理学院 吉林省光谱探测科学与技术重点实验室, 吉林 长春 130000
中波红外器件从单色、双色, 向多光谱方向发展, 金属微纳结构是实现中波红外光谱功能的核心器件, 为研究中红外透射光谱特性并实现透射光谱的调制, 基于表面等离激元共振(SPs)理论, 结合有限时域差分法(FDTD)对薄膜型金属微纳孔阵列的透射光谱进行了模拟研究。深入分析了入射光源在中红外3.0~5.0μm波段内, 孔洞的形状和大小、孔阵列周期、金属膜层厚度以及金属材质对光谱透射特性的影响。通过设计模拟不同结构, 发现透射光谱强度主要由孔洞结构的大小决定, 改变阵列的周期可以调制透射峰位, 同时透射强度随着金属膜厚度的减小而快速增大, 金属材质Ag更易于中红外光的透射; 进一步依据圆孔半径(方孔边长)、阵列周期以及透射峰位, 用最小二乘法拟合得到了不同结构模型对应的设计关系式, 即在理论层面实现了3.0~5.0μm波段金属微纳结构透射光谱的调制功能, 为多通道孔阵滤波器以及光谱探测设备的设计提供了理论依据。
透射光谱 中红外 金属微纳结构 表面等离激元 时域有限差分法 transmission spectrum mid infrared metal micro nano structure surface plasmon FDTD 
光学技术
2022, 48(2): 177
作者单位
摘要
1 长春理工大学理学院吉林省光谱探测科学与技术重点实验室, 吉林 长春 130022
2 吉林工程技术师范学院信息工程学院, 吉林 长春 130052
3 吉林农业大学植物保护学院, 吉林 长春 130118
4 海军航空大学航空作战勤务学院, 山东 烟台 264000
5 中国科学院东北地理与农业生态研究所, 吉林 长春 130012
大豆在生长过程中因病害影响其产量会急剧下降, 如果不及时判别出病害种类, 喷洒相关农药, 病害严重的大豆甚至会绝产。 及时判别病害种类进行合理施药, 阻止病害进一步发展是保证大豆安全生产的重要环节。 目前, 基于大豆植株细菌性病害的病原菌鉴定和聚合酶链式反应(polymerase chain reaction, PCR)的鉴定方法, 最短需要两天时间, 因此, 快速检测大豆病害种类的方法成为该作物, 也是建立智慧农业生产的关键环节之一。 应用拉曼光谱快速检测技术诊断大豆病害, 构建N-乙酰胞壁酸分子空间结构, 采用密度泛函理论通过利用B3LYP/6-31+(d, p)基组优化大豆细菌性病害标志物N-乙酰胞壁酸的分子结构计算其拉曼光谱, 并进行理论因子校正, 校正因子为0.985 7; 采用微区三级拉曼光谱技术探测该标志物N-乙酰胞壁酸的拉曼光谱, 采用平滑、 去基线、 截取波数范围等过程进行光谱预处理; 在理论和实验对比分析的基础上, 指认大豆测试和计算的拉曼光谱对应的特征峰, 峰值波数相差大多在0~10 cm-1, 实验数据与理论计算结果基本一致, 判定了振动拉曼光谱的特征峰及其对应的分子结构的关系。 结果表明: 大豆细菌性病害标志物N-乙酰胞壁酸分子在200~1 650 cm-1范围内含15个特征峰, 较强峰值和振动归属分别为229.0 cm-1的甲基摇摆振动和764.0 cm-1环内的摇摆呼吸振动等, 给出了键长、 键角和二面角等15个振动峰的空间结构参数, 指证了N-乙酰胞壁酸分子的特征结构。 结果也证明了可通过多种生物分子的大豆拉曼光谱测量, 筛选细菌性病害标志物N-乙酰胞壁酸分子的拉曼光谱, 能够有效识别细菌性病害。 智慧农业生产中利用拉曼光谱快速检测技术, 是农作物病害检测诊断的一种有效方法, 若结合应用机器学习方法与光谱分析识别, 以快速、 准确和便捷的方式为智慧农业的健康生产及保驾护航发挥效用, 是推进我国农业发展的重要环节。
大豆细菌性病害 N-乙酰胞壁酸 拉曼光谱 密度泛函理论 光谱分析 N-acetylmuramic acid Raman spectroscopy Density functional theory Soybean bacterial disease Spectral analysis 
光谱学与光谱分析
2022, 42(2): 459
作者单位
摘要
1 吉林大学超硬材料国家重点实验室, 吉林 长春130012
2 吉林大学物理学院, 吉林 长春130012
电子-声子耦合常数不仅可以反映出分子中π电子离域程度的强弱, 有效共轭长度的大小, 同时也可以表征分子中的原子和电子在外界环境作用下的相互振动耦合程度的强弱。 在一些研究中电子-声子耦合常数被定义为无量纲的系数。 应用R.Tubino等引用的一种有量纲的电子-声子耦合常数, 建立其与黄昆因子的关系式, 进而可以计算出共轭键中单个振动模的数值。 压强对多烯分子吸收光谱、 拉曼光谱频移影响的研究已有报道, 但对拉曼散射截面、 黄昆因子、 电子-声子耦合常数的研究还没有报道。 测量了β胡萝卜素分子在二硫化碳溶液中0.04~0.60 GPa的压强范围内的紫外-可见吸收光谱和共振拉曼光谱。 实验结果表明, 随着压强的增加, CS2溶液中的β胡萝卜素分子的紫外-可见吸收光谱的吸收带发生明显的红移现象, 而拉曼光谱的特征谱线却发生蓝移的现象, 拉曼散射截面减小, 电子-声子耦合常数增加。 其机理是随着压强的增加, β胡萝卜素分子被压缩又结构有序性下降, 导致电子能隙变窄, 有效共轭长度变短, π电子离域范围减小, 拉曼散射截面减小, 黄昆因子、 电子-声子耦合常数增加。
β胡萝卜素 黄昆因子 电子-声子耦合常数 All-trans-βcarotene Huang-Rhys factor Electron-phonon coupling constants 
光谱学与光谱分析
2014, 34(5): 1302
李硕 1,*孙尚 1里佐威 1曲冠男 1[ ... ]范丽梅 1,2
作者单位
摘要
1 吉林大学超硬材料国家重点实验室, 物理学院, 吉林 长春130012
2 吉林大学第二医院, 吉林 长春130041
β-胡萝卜素具有光采集、 光防护功能, 又是重要的光电材料, 它在外场下的分子结构和性能变化既有理论意义也有应用价值。 测量了β-胡萝卜素在环己醇中68~26 ℃温度范围内的紫外-可见吸收、 拉曼光谱。 实验结果表明随着温度的降低, 黄琨因子和碳碳键每个振动模的电子-声子耦合常数减小, 紫外-可见吸收光谱红移, 碳碳键拉曼散射截面增加。 用线性链状多烯分子的“相干弱阻尼电子-晶格振动模型”、 “有效共轭长度模型”等理论给予了解释。 随着温度的降低, β-胡萝卜素分子的热无序减小, 分子结构有序性增加, π电子离域扩展, 有效共轭长度增加, 导致紫外-可见吸收光谱红移和强的拉曼活性。 相干弱阻尼电子-晶格振动增强, 使碳碳键拉曼散射截面增加。 引用带有量纲的电子-声子相互作用常数, 既可以与黄昆因子建立关系式, 计算出碳碳键每个振动模的数值, 也可以表征分子的有效共轭长度, π电子离域程度及拉曼散射截面的大小等。
β-胡萝卜素 黄琨因子 电子-声子耦合常数 All-trans-β-carotene Huang-Ryes factor Electron-phonon coupling constant 
光谱学与光谱分析
2013, 33(9): 2311
作者单位
摘要
1 吉林大学 超硬材料国家重点实验室, 吉林 长春 130012
2 吉林大学 电子科学与工程学院, 吉林 长春 130012
3 吉林大学 物理学院, 吉林 长春 130012
利用532 nm脉冲激光作用于水分子,研究其受激拉曼Stokes和anti-Stokes散射. 实验表明:激光束经过聚焦后,在能量为4 mJ时,水分子产生等离子体;在泵浦激光能量由5 mJ增加到15 mJ的过程中,水分子OH键伸缩振动的受激拉曼Stokes散射光强逐渐增大、受激谱带宽度逐渐加宽,并且受激拉曼Stokes散射中心波长呈现蓝移趋势;当能量为15 mJ时,产生了OH键伸缩振动的受激拉曼anti-Stokes散射光.利用激光诱导等离子体增强水分子团簇的受激拉曼散射理论解释了以上现象,实验与理论符合地很好.
水团簇 激光诱导等离子体 受激拉曼散射 water cluster laser-induced plasma stimulated Raman scattering 
红外与毫米波学报
2012, 31(4): 375
作者单位
摘要
1 吉林大学超硬材料国家重点实验室, 吉林 长春130012
2 吉林大学电子科学与工程学院, 吉林 长春130012
3 吉林大学物理学院, 吉林 长春130012
测量了室温下2.5~23 GPa压强下冰Ⅶ相的拉曼光谱。 测量结果表明: 随压强增加, 冰的氧原子间距离dO—O减小, 使氢键长度变短, 导致O—H化学键键长增加, 力常数减小, 拉曼光谱发生红移。 质子(氢核)取向有序性随压强先增加而后减小致使拉曼光谱强度先增加而后减小; 拉曼光谱线宽先减小而后增加, 当压强约为13 GPa时呈现最小值。
冰Ⅶ相 氢键 拉曼光谱 Ice Ⅶ Hydrogen bond Raman scattering 
光谱学与光谱分析
2012, 32(5): 1259

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!