人工晶体学报, 2020, 49 (10): 1770, 网络出版: 2021-01-09  

硼、氮共掺杂金刚石的高温高压退火研究

HPHT Annealing of Boron and Nitrogen Co-Doped Diamond
作者单位
1 深圳大学机电与控制工程学院,深圳 518060
2 深圳大学光电工程学院,光电子器件与系统(教育部/广东省)重点实验室,深圳 518060
3 赤峰学院,内蒙古自治区高压相功能材料重点实验室,赤峰 024000
4 北京中材人工晶体研究院有限公司,北京 100018
摘要
本文通过温度梯度法在5.5 GPa和1 300 ℃的条件下合成了硼、氮共掺杂金刚石单晶。随后分别在5.0 GPa,2 000 ℃和2 100 ℃的条件下对合成金刚石进行了高温高压(HPHT)退火处理。傅里叶红外光谱(FT-IR)测试表明高温高压退火后晶体内部单一替代形式的C心氮转变成了聚集态A心氮,且随着退火温度的升高A心氮的含量提高。晶体内部带正电荷的氮离子N+的含量并未受到退火处理的影响。经过高温退火后晶体内部出现了NV0和NV-色心,但是继续提高退火温度时NV色心消失。高温高压退火并未对金刚石晶体的结构及内应力产生明显的影响。高温高压退火处理后金刚石晶体的热稳定性能提高,其起始氧化温度、剧烈氧化温度以及质量急剧减少的温度点分别提高了65 ℃、55 ℃以及61 ℃。本文对高温高压退火处理应用到硼、氮共掺杂金刚石提供了指导。
Abstract
In this paper, boron and nitrogen co-doped diamond was synthesized under the condition of 5.5 GPa and 1 300 ℃ by temperature gradient growth method. Then the synthetic diamond was annealed under the pressure of 5.0 GPa and the temperature of 2 000 ℃ and 2 100 ℃. FT-IR spectra demonstrate that the singly substituted form nitrogen (C-center) in the crystal after high pressure and high temperature (HPHT) annealing is transformed into the aggregation form nitrogen (A-center), and the concentration of A-center nitrogen increases with the annealing temperature. The concentration of positively charged nitrogen ion (N+) in the crystal is not affected by HPHT annealing treatment. After high temperature annealing, NV0 and NV- center appear in the diamond, but disappear when the annealing temperature continues to increase. HPHT annealing has no obvious effect on the structure and internal stress of diamond crystal. After HPHT annealing treatment, the thermal stability of diamond is improved, the initial oxidation temperature, intense oxidation temperature and the temperature point where the mass sharply decrease are increased by 65 ℃, 55 ℃ and 61 ℃, respectively. This paper provides guidance for the HPHT annealing treatment application to boron and nitrogen co-doped diamond.
参考文献

[1] Li Y D, Wang C X, Chen N, et al. Significant improvement of multi-seed method of diamond synthesis by adjusting the lateral cooling water temperature[J]. CrystEngComm, 2017, 19: 6681-6685.

[2] Masuya S, Hanada K, Moribayashi T, et al. Determination of partial dislocations of stacking fault in (111) single crystal diamond grown on (111) seed crystal by synchrotron X-ray topography[J]. Journal of Crystal Growth, 2017, 468: 439-442.

[3] Zhang G Q, Dai Y Q, To S, et al. Tool interference at workpiece centre in single-point diamond turning[J]. International Journal of Mechanical Sciences, 2019, 151: 1-12.

[4] Pezzagna S, Rogalla D, Wildnger D, et al. Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks[J]. New Journal of Physics, 2011, 13: 035024.

[5] Herrmann M, Matthey B, Gestrich T. Boron-doped diamond with improved oxidation resistance[J]. Diamond and Related Materials, 2019, 92: 47-52.

[6] Li H S, Qi Y X, Gong J H, et al. High-pressure synthesis and characterization of thermal-stable boron-doped diamond single crystals[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27: 564-570.

[7] Palyanov Y N, Kupriyanov I N, Borzdov Y M, et al. High-pressure synthesis and characterization of diamond from an Mg-Si-C system[J]. CrystEngComm, 2015, 17: 7323-7331.

[8] Fang C, Jia X P, Chen N, et al. HPHT synthesis of N-H co-doped diamond single crystals[J]. Journal of Crystal Growth, 2016, 436: 34-39.

[9] Sun S S, Jia X P, Yan B M, et al. Synergistic effect of nitrogen and hydrogen on diamond crystal growth at high pressure and high temperature[J]. Diamond and Related Materials, 2014, 42: 21-27.

[10] Chen N, Ma H, Yan B, et al. Characterization of various centers in synthetic type Ib diamond under hpht annealing[J]. Crystal Growth & Design, 2018, 18: 3870-3876.

[11] Yamaguchi T, Higuchi M, Shimada S, et al. Scientific screening of raw diamond for an ultraprecision cutting tool with high durability[J]. CIRP Annals, 2006, 55: 71-74.

[12] Breeding C M, Shigley J E. The “type” classification system of diamonds and its importance in gemology[J]. Gems & Gemology, 2009, 45: 96-111.

[13] 李 勇,廖江河,陈 宁,等.Fe70Ni30粉末触媒中 IIa 型金刚石大单晶的高温高压合成[J].人工晶体学报,2018,47(5):1055-1059.

[14] Guo L S, Ma H A, Chen L C, et al. Synthesis and characterization of diamonds using C3H5N3O as an organic additive under high pressure and high temperature[J]. CrystEngComm, 2018, 20: 5457-5464.

[15] Guo M M, Li S S, Hu M H, et al. The growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in feni-c system[J]. Chinese Physics B, 2019, 29: 018101.

[16] Chen N, Zhang G Q, Li R, et al. Defect and stress reduction in high-pressure and high-temperature synthetic diamonds using gradient cooling technology[J]. Crystal Growth & Design, 2020, 20: 3358-3364.

[17] Chen L C, Shen W X, Fang C, et al. High pressure and high temperature annealing of Ni-containing, nitrogen-rich synthetic diamonds and the formation of NE8 centers high pressure and high temperature annealing of Ni-containing, nitrogen-rich synthetic diamonds and the formation of NE8 centers[J]. Crystal Growth & Design, 2020, 20: 3257-3263.

[18] Miao X Y, Chen L C, Ma H, et al. Studies on HPHT synthesis and N defects of N-rich B-doped diamonds[J]. CrystEngComm, 2018, 20: 7109-7113.

[19] Huang G F, Jia X P, Li S S, et al. Effects of additive NaN3 on the HPHT synthesis of large single crystal diamond grown by TGM[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2010, 53: 1831-1835.

[20] Liu X Y, Wang Y H, Dong L, et al. One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media[J]. Electrochimica Acta, 2016, 194: 161-167.

[21] Prakash A, Sundaram K B. Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets[J]. Applied Surface Science, 2017, 396: 484-491.

[22] 韩 飞,李尚升,朱丽飞,等.激光拉曼光谱法在金刚石研究中的应用[J].人工晶体学报,2018,47(5):1060-1065.

[23] Fang S, Ma H A, Cai Z H, et al. Study on the crack phenomenon of heavy FeS-doped Ib diamond crystals with {111} surface as growth surface in Fe-Ni-C system[J]. CrystEngComm, 2020, 22: 602-609.

[24] Chen N, Ma H A, Chen L X, et al. Effects of S on the synthesis of type Ib diamond under high pressure and high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 141-146.

[25] Beha K, Batalov A, Manson N B, et al. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond[J]. Phys Rev Lett, 2012, 109:097404.

陈宁, 张国庆, 徐刚, 黄国锋, 周振翔. 硼、氮共掺杂金刚石的高温高压退火研究[J]. 人工晶体学报, 2020, 49(10): 1770. CHEN Ning, ZHANG Guoqing, XU Gang, HUANG Guofeng, ZHOU Zhenxiang. HPHT Annealing of Boron and Nitrogen Co-Doped Diamond[J]. Journal of Synthetic Crystals, 2020, 49(10): 1770.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!