强激光与粒子束, 2016, 28 (9): 092004, 网络出版: 2016-09-14  

射频功率对氢气与反式二丁烯的低压电感耦合等离子体的影响

Effects of RF power on low-pressure inductively coupled plasma of hydrogen and trans-two-butane
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
引用该论文

陈果, 何智兵, 何小珊, 张玲, 唐永建. 射频功率对氢气与反式二丁烯的低压电感耦合等离子体的影响[J]. 强激光与粒子束, 2016, 28(9): 092004.

Chen Guo, He Zhibing, He Xiaoshan, Zhang Ling, Tang Yongjian. Effects of RF power on low-pressure inductively coupled plasma of hydrogen and trans-two-butane[J]. High Power Laser and Particle Beams, 2016, 28(9): 092004.

参考文献

[1] Nikroo A, Pontelandolfo J M, Castillo E R. Coating and mandrel effects on fabrication of glow discharge polymer NIF scale indirect drive capsules[J]. Fusion Science and Technology, 2002, 41: 220-225.

[2] Haan S W, Hatchett S P, Hurricane O A, et al. Update on NIF indirect drive ignition target fabrication specifications[J]. Fusion Sci Technol, 2004, 45: 69-73.

[3] Theobald M, Durand J, Baclet P, et al. Comparative study of a-C: H films for inertial confinement fusion prepared with various hydrocarbon precursors by radio frequency-plasma enhanced chemical vapor deposition[J]. J Vac Sci Technol A, 2000, 18: 278-284.

[4] Theobald M, Chicanne C, Barnouin J, et al. Gas etching to obtain germanium doped CHx microshells compatible with the laser megajoule target specifications[J]. Fusion Sci Technol, 2006, 49: 757-763.

[5] Yang Zhilin, He Zhibing, Song Zhimin, et al. Influence of T2B/H2 flow ratio on thermal stability of glow discharge polymer prepared by low-pressure plasma chemical vapor deposition[J]. High Power Laser and Particle Beams, 2010, 22: 1044-1048.

[6] Johnson W L, Hatcher C W, Hendricks C D, et al. Plasma polymerization coating of DT-filled glass shells for laser fusion targets[J]. J Opt Soc Am, 1978, 68: 315-319.

[7] Letts S A, Myers D W, Witt L A. Ultrasmooth plasma polymerized coatings for laser fusion targets[J]. J Vac Sci Technol, 1981, 19: 739-742.

[8] Czechowicz D G, Castillo E R, Nikroo A. Composition and structural studies of strong glow discharge polymer coatings[J]. Fusion Sci Technol, 2002, 41: 190-192.

[9] Nikroo A, Czechowicz D G, Castillo E, et al. Recent progress in fabrication of high-strength glow discharge polymer shells by optimization of coating parameters[J]. Fusion Sci Technol, 2002, 41: 214-219.

[10] Theobald M, Dumay B, Chicanne C, Barnouin J, et al. Roughness optimization at high modes for GDP CHx microshells[J]. Fusion Sci Technol, 2004, 45: 175-179.

[11] Chen K C, Huang H, Nikroo A. Fabrication of graded germanium-doped CH shells[J]. Fusion Sci Technol, 2006, 49: 750-756.

[12] Fox-Lyon N, Oehrlein G S, Ning N, et al. Hydrogenation and surface density changes in hydrocarbon films during erosion using Ar/H2 plasmas[J]. J Appl Phys, 2011, 110: 1712-1714.

[13] Mensah S L, Naseem H H, Safe H A, et al. Investigating the role of hydrogen in silicon deposition using an energy-resolved mass spectrometer and a Langmuir probe in an Ar/H2 radio frequency magnetron discharge[J]. Phys Plasmas, 2012, 19: 073521.

[14] Tang S K, Wang W C, Xu Y, et al. Diagnosis of high voltage pulsed corona discharge induced N2+O2 plasma by molecular beam mass spectrometry[J]. Vacuum Science and Technology, 2002, 22: 131-134.

[15] Zhang Ling, He Xiaoshan, Chen Guo, et al. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films[J]. Appl Surf Sci, 2016, 366: 499-505.

[16] Li Rui, He Zhibing, He Xiaoshan, et al. Influence of radio-frequency power on the state of H2/C4H8 glowing discharge plasma[J]. Acta Physica Sinica, 2012, 61: 215203.

[17] Druyvesteyn M J. Der Niedervoltbogen[J]. Z Phys, 1930, 64: 781-798.

[18] Turner M M. Collisionless electron heating in an inductively coupled discharge[J]. Phys Rev Lett, 1993, 71: 1844-1847.

[19] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. Hoboken: Wiley-Interscience, 2005.

[20] Keller J H, Pennebaker W B. Sputtering process model of deposition rate[J]. IBM J Res Develop, 1979, 23: 24-32.

[21] Cunge G, Booth J P. CF2 production and loss mechanisms in fluorocarbon discharges: fluorine-poor conditions and polymerization[J]. J Appl Phys, 1999, 85: 3952-3959.

[22] Lin K X, Lin X Y, Yun Y P, et al. Measurements in silane radio frequency glow discharge using a tuned and heated Langmuir probe[J]. J Appl Phys, 1993, 74: 4899-4902.

陈果, 何智兵, 何小珊, 张玲, 唐永建. 射频功率对氢气与反式二丁烯的低压电感耦合等离子体的影响[J]. 强激光与粒子束, 2016, 28(9): 092004. Chen Guo, He Zhibing, He Xiaoshan, Zhang Ling, Tang Yongjian. Effects of RF power on low-pressure inductively coupled plasma of hydrogen and trans-two-butane[J]. High Power Laser and Particle Beams, 2016, 28(9): 092004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!