强激光与粒子束, 2016, 28 (9): 092004, 网络出版: 2016-09-14  

射频功率对氢气与反式二丁烯的低压电感耦合等离子体的影响

Effects of RF power on low-pressure inductively coupled plasma of hydrogen and trans-two-butane
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
利用等离子体聚合技术制备的GDP壳层是目前ICF靶丸的主要烧蚀层材料。为了了解GDP薄膜沉积过程中的CH等离子体的状态, 采用朗缪尔探针和质谱仪对C4H8/H2等离子体的组分和状态参数进行了诊断, 并对等离子体的电子能量分布函数、电子密度、电子温度等进行了深入分析。同时讨论了等离子体状态与放电参数之间的关系。研究发现, 射频功率对等离子体参数有明显的影响。从10 W到35 W, 电子密度正比于射频功率。随着射频功率的增加, 在两步电离机制作用下, 电子温度和等离子体电势呈现先减小后增大的变化趋势。另外, 在高气压下, 质谱诊断中发现了大量的稳定的小质量碎片离子, 这表明在高气压下等离子体气相中的离子碎片聚合反应被抑制。
Abstract
The hydrocarbon glow discharge polymer (GDP) shells fabricated by plasma polymerization technology were used as the ablators for ICF targets. In order to understand the properties of hydrocarbon plasma for GDP deposition, plasmas of trans-two-butane and H2 (T2B/H2) were investigated by Langmuir probe and mass spectrometer in the diffusion region. Several parameters, such as electron energy probability functions, electron densities, electron temperature were analyzed. The relationship between the properties of plasma and the discharge parameters were also discussed. It was found that there was a significant modulating effect of the radio frequency (RF) powers on the plasma parameters. The electron density was found to be nearly proportional to the discharge power in the range of 10 W to 35 W. As the RF power increased, the electron temperature and plasma potential decreased at first then increased with discharge power, which was governed by a two-step ionization mechanism. The small and stable fragments, found by mass spectrometer, indicated that the polymerization was suppressed in the gas phase at high RF power.
参考文献

[1] Nikroo A, Pontelandolfo J M, Castillo E R. Coating and mandrel effects on fabrication of glow discharge polymer NIF scale indirect drive capsules[J]. Fusion Science and Technology, 2002, 41: 220-225.

[2] Haan S W, Hatchett S P, Hurricane O A, et al. Update on NIF indirect drive ignition target fabrication specifications[J]. Fusion Sci Technol, 2004, 45: 69-73.

[3] Theobald M, Durand J, Baclet P, et al. Comparative study of a-C: H films for inertial confinement fusion prepared with various hydrocarbon precursors by radio frequency-plasma enhanced chemical vapor deposition[J]. J Vac Sci Technol A, 2000, 18: 278-284.

[4] Theobald M, Chicanne C, Barnouin J, et al. Gas etching to obtain germanium doped CHx microshells compatible with the laser megajoule target specifications[J]. Fusion Sci Technol, 2006, 49: 757-763.

[5] Yang Zhilin, He Zhibing, Song Zhimin, et al. Influence of T2B/H2 flow ratio on thermal stability of glow discharge polymer prepared by low-pressure plasma chemical vapor deposition[J]. High Power Laser and Particle Beams, 2010, 22: 1044-1048.

[6] Johnson W L, Hatcher C W, Hendricks C D, et al. Plasma polymerization coating of DT-filled glass shells for laser fusion targets[J]. J Opt Soc Am, 1978, 68: 315-319.

[7] Letts S A, Myers D W, Witt L A. Ultrasmooth plasma polymerized coatings for laser fusion targets[J]. J Vac Sci Technol, 1981, 19: 739-742.

[8] Czechowicz D G, Castillo E R, Nikroo A. Composition and structural studies of strong glow discharge polymer coatings[J]. Fusion Sci Technol, 2002, 41: 190-192.

[9] Nikroo A, Czechowicz D G, Castillo E, et al. Recent progress in fabrication of high-strength glow discharge polymer shells by optimization of coating parameters[J]. Fusion Sci Technol, 2002, 41: 214-219.

[10] Theobald M, Dumay B, Chicanne C, Barnouin J, et al. Roughness optimization at high modes for GDP CHx microshells[J]. Fusion Sci Technol, 2004, 45: 175-179.

[11] Chen K C, Huang H, Nikroo A. Fabrication of graded germanium-doped CH shells[J]. Fusion Sci Technol, 2006, 49: 750-756.

[12] Fox-Lyon N, Oehrlein G S, Ning N, et al. Hydrogenation and surface density changes in hydrocarbon films during erosion using Ar/H2 plasmas[J]. J Appl Phys, 2011, 110: 1712-1714.

[13] Mensah S L, Naseem H H, Safe H A, et al. Investigating the role of hydrogen in silicon deposition using an energy-resolved mass spectrometer and a Langmuir probe in an Ar/H2 radio frequency magnetron discharge[J]. Phys Plasmas, 2012, 19: 073521.

[14] Tang S K, Wang W C, Xu Y, et al. Diagnosis of high voltage pulsed corona discharge induced N2+O2 plasma by molecular beam mass spectrometry[J]. Vacuum Science and Technology, 2002, 22: 131-134.

[15] Zhang Ling, He Xiaoshan, Chen Guo, et al. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films[J]. Appl Surf Sci, 2016, 366: 499-505.

[16] Li Rui, He Zhibing, He Xiaoshan, et al. Influence of radio-frequency power on the state of H2/C4H8 glowing discharge plasma[J]. Acta Physica Sinica, 2012, 61: 215203.

[17] Druyvesteyn M J. Der Niedervoltbogen[J]. Z Phys, 1930, 64: 781-798.

[18] Turner M M. Collisionless electron heating in an inductively coupled discharge[J]. Phys Rev Lett, 1993, 71: 1844-1847.

[19] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. Hoboken: Wiley-Interscience, 2005.

[20] Keller J H, Pennebaker W B. Sputtering process model of deposition rate[J]. IBM J Res Develop, 1979, 23: 24-32.

[21] Cunge G, Booth J P. CF2 production and loss mechanisms in fluorocarbon discharges: fluorine-poor conditions and polymerization[J]. J Appl Phys, 1999, 85: 3952-3959.

[22] Lin K X, Lin X Y, Yun Y P, et al. Measurements in silane radio frequency glow discharge using a tuned and heated Langmuir probe[J]. J Appl Phys, 1993, 74: 4899-4902.

陈果, 何智兵, 何小珊, 张玲, 唐永建. 射频功率对氢气与反式二丁烯的低压电感耦合等离子体的影响[J]. 强激光与粒子束, 2016, 28(9): 092004. Chen Guo, He Zhibing, He Xiaoshan, Zhang Ling, Tang Yongjian. Effects of RF power on low-pressure inductively coupled plasma of hydrogen and trans-two-butane[J]. High Power Laser and Particle Beams, 2016, 28(9): 092004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!