光学与光电技术, 2020, 18 (2): 47, 网络出版: 2020-06-18  

基于压缩感知的空间虚拟阵列波束形成技术

Airspace Narrow Beam Azimuth Estimation Based on Compressed Sensing
作者单位
大连大学通信与网络重点实验室, 辽宁 大连 116622
摘要
主动声呐目标回波受海洋环境噪声干扰严重, 远距离探测回波信号弱, 目标方位估计准确度低, 并且传统基阵空间谱估计方法需要满足奈奎斯特采样率, 采集数据量大。利用信号的空域稀疏性, 以回波信号亮点模型为基础, 研究了基于压缩感知的空间虚拟阵列目标方位估计技术。在接收基阵物理孔径有限的情况下, 利用线性预测(LP)虚拟阵列方法提高阵列孔径尺度, 采用压缩感知(CS)算法对目标回波信号进行重构与恢复, 通过数据仿真分析表明该算法提高了基阵空间谱估计的分辨力, 有效地抑制了噪声干扰。
Abstract
The active sonar target echo is seriously interfered by the marine environment noise. The long-range detection echo signal is weak, and the target azimuth estimation accuracy is low. Moreover, the traditional matrix spatial spectrum estimation method needs to satisfy the Nyquist sampling rate and the data acquisition amount is large. Based on the spatial sparseness of the signal and the echo signal bright spot model, the spatial azimuth estimation technique based on compressed sensing is studied. In the case of limited physical aperture of the receiving matrix, the linearaperture(LP) virtual array method is used to improve the aperture size of the array, and the compressed echo(CS)algorithm is used to reconstruct and recover the target echo signal. The data is simulated and analyzed. The resolution of the spatial spectrum estimation of the array is improved, and the noise interference is effectively suppressed.
参考文献

[1] 付金山. 基于稀疏分解理论的声矢量阵信号处理[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    FU Jin-shan. Sound vector array signal processing based on sparse decomposition theory[D]. Harbin: Harbin Engineering University, 2012.

[2] DoOnoho D. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.

[3] Candès E, Romberg J, Tao T. Robust uncertaintyprinciples: Exact signal reconstruction from highlyincomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509.

[4] Candès E, Tao T. Near optinal signal recovery from random projections: Universal encoding strategies[J]. IEEE Trans. Information Theory, 2006, 52(12): 5406-5425.

[5] Kashin B. The widths of certain finite dimensional sets and classes of smooth functions[J]. Izv Akad Nauk SSSR, 1997, 41(2): 334-351.

[6] 李冬冬. 基于压缩感知的水下目标声信号去噪识别方法研究[D]. 秦皇岛: 燕山大学, 2018.

    LI Dong-dong. Research on denoising recognitionmethod of underwater target acoustic signal based on compressed sensing[D]. Qinhuangdao: Yanshan University, 2018.

[7] 高恩伟. 基于压缩感知的水下目标回波信号处理技术研究[D]. 杭州: 杭州电子科技大学, 2017.

    GAO En-wei. Research on underwater target echo signal processing technology based on compressed sensing[D]. Hangzhou: Hangzhou University of Electronic Technology, 2017.

[8] 汤渭霖. 声呐目标回波的亮点模型[J]. 声学学报, 1994, (2): 92-100.

    TANG Yu-lin. The bright spot model of sonar targetecho[J]. Acta Acoustics Sinica, 1994, (2): 92-100.

[9] 杨阳. 水下目标声散射信号的盲分离研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    YANG Yang. Blind separation of underwater targetacoustic scattering signals [D]. Harbin: Harbin Engineering University, 2017.

[10] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004.

    WANG Yong-liang, CHEN Hui, PENG Ying-ning, et al. Theory and algorithm of spatial spectral estimation[M]. Beijing: Tsinghua University Press, 2004.

[11] 郭熙业, 苏绍璟, 王跃科. 多通道海底混响线性预测方法研究[J]. 兵工学报, 2010, 31(1): 99-103.

    GUO Xi-ye, SU Shao-xi, WANG Yue-ke. Study on linear prediction method of multi-channel submarine reverberation[J]. Acta Armamentari Sinica, 2010, 31(1): 99-103.

[12] 崔琳, 李亚安. 基于线性预测和最小二乘估计的缺陷阵波束形成[J]. 系统仿真学报, 2009, 21(24): 7782-7785.

    CUI Lin, LI Ya-an. Defective array beamforming based on linear prediction and least squares estimation[J]. Journal of System Simulation, 2009, 21(24): 7782-7785.

[13] 魏瑞轩, 沈东, 孔韬, 等. 基于PDAF 和线性预测的实时小目标跟踪算法[J]. 系统工程与电子技术, 2011, 33(5): 978-981.

    WEI Rui-xuan, SHEN Dong, KONG Wei, et al. Real-time small target tracking algorithm based on PDAF and linear prediction[J]. System Engineering and Electronics, 2011, 33(5): 978-981.

[14] 胡鹏, 杨益新, 杨士莪. 基于线性预测的虚拟阵元波束形成[J]. 声学技术, 2007, (4): 714-717.

    HU Peng, YANG Yi-xin, YANG Shi-zhen. The virtual array element beamforming based on linear prediction[J]. Audio Technique, 2007, (4): 714-717.

[15] 张国光. 复杂混响背景下声呐基阵的目标方位估计算法[J]. 舰船电子工程, 2017, 37(1): 22-26.

    ZHANG Guoguang. Target azimuth estimation algorithm for sonar array based on complex reverberation background [J]. Ship Electronic Engineering, 2017, 37(1): 22-26.

[16] 莫长鑫, 毕宁. OMP 算法对稀疏信号准确重构的一个充分条件[J]. 复旦学报(自然科学版), 2019, 58(1): 19-24.

    MO Changxin, BI Ning. A sufficient condition for the accurate reconstruction of sparse signals by OMP algorithm [J]. Journal of Fudan University(Natural Science), 2019, 58(1): 19-24.

[17] 林乐平. 基于过完备字典的非凸压缩感知理论与方法研究[D]. 西安: 西安电子科技大学, 2016.

    LIN Le-ping. Research on non-convex compressionsensing theory and method based on overcomplete dictionary [D]. Xi’an: Xi’an University of Electronic Science and Technology, 2016.

[18] 麻曰亮, 裴立业, 江桦. 改进的压缩感知测量矩阵优化方法[J]. 信号处理, 2017, 33(2): 192-197.

    MA Wei-liang, YAN Li-ye, JIANG Hua. Improved compressed sensing measurement matrix optimization method [J]. Signal Processing, 2017, 33(2): 192-197.

[19] VivekK Goyal, Alyson K Fletcher, Sundeep Rangan. Compressive sampling and lossy compression[J]. IEEE Signal Processing Magazine, 2008, 25(2): 48-56.

[20] 闫敬文, 刘蕾, 屈小波. 压缩感知及应用[M]. 北京: 国防工业出版社, 2015.

    YAN Jing-wen, LIU Lei, QU Xiao-bo. Compressed sensing and application[M]. Beijing: National Defence Industry Press, 2015.

[21] 孟祥夏. 基于稀疏信号表示的水下目标回波参数估计[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    MENG Xiang-xia. Estimation of underwater target echo parameters based on sparse signal representation [D]. Harbin: Harbin Engineering University, 2018.

许萌, 杨阳, 徐磊, 丁元明. 基于压缩感知的空间虚拟阵列波束形成技术[J]. 光学与光电技术, 2020, 18(2): 47. XU Meng, YANG Yang, XU Lei, DING Yuan-ming. Airspace Narrow Beam Azimuth Estimation Based on Compressed Sensing[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2020, 18(2): 47.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!