中国激光, 2020, 47 (4): 0402002, 网络出版: 2020-04-08   

激光重熔A356铝合金表面的力学性能 下载: 1205次

Mechanical Properties of A356 Aluminum Alloy after Laser Surface Remelting
作者单位
燕山大学机械工程学院, 河北 秦皇岛 066000
引用该论文

王建刚, 高士友, 陈旭升, 张梦雨. 激光重熔A356铝合金表面的力学性能[J]. 中国激光, 2020, 47(4): 0402002.

Wang Jiangang, Gao Shiyou, Chen Xusheng, Zhang Mengyu. Mechanical Properties of A356 Aluminum Alloy after Laser Surface Remelting[J]. Chinese Journal of Lasers, 2020, 47(4): 0402002.

参考文献

[1] Dubourg L, Ursescu D, Hlawka F, et al. Laser cladding of MMC coatings on aluminium substrate: influence of composition and microstructure on mechanical properties[J]. Wear, 2005, 258(11/12): 1745-1754.

[2] Chen S X, Richter B, Morrow J D, et al. Pulsed laser remelting of A384 aluminum, part I: measuring homogeneity and wear resistance[J]. Journal of Manufacturing Processes, 2018, 32: 606-614.

[3] Chi Y M, Gu G C, Yu H J, et al. Laser surface alloying on aluminum and its alloys: a review[J]. Optics and Lasers in Engineering, 2018, 100: 23-37.

[4] 孙云辉, 周建忠, 盛杰, 等. 深冷激光喷丸强化2024-T351铝合金拉伸性能及断口分析[J]. 中国激光, 2017, 44(8): 0802003.

    Sun Y H, Zhou J Z, Sheng J, et al. Tensile property and fracture analysis of 2024-T351 aluminum alloys by cryogenic laser peening[J]. Chinese Journal of Lasers, 2017, 44(8): 0802003.

[5] 张光耀, 王成磊, 高原, 等. 稀土La2O3对6063Al激光熔覆Ni基熔覆层微观结构的影响[J]. 中国激光, 2014, 41(11): 1103001.

    Zhang G Y, Wang C L, Gao Y, et al. Effect of rare earth La2O3 on the microstructure of laser cladding Ni-based coatings on 6063 Al alloys[J]. Chinese Journal of Lasers, 2014, 41(11): 1103001.

[6] 雷临苹, 叶宏, 宋坤, 等. Al2O3-TiO2对铝合金表面激光熔覆NiAl涂层组织性能的影响[J]. 表面技术, 2018, 47(10): 145-150.

    Lei L P, Ye H, Song K, et al. Effect of Al2O3-TiO2 on microstructure and properties of NiAl coating by laser cladding on aluminum alloy[J]. Surface Technology, 2018, 47(10): 145-150.

[7] BiswasK, GalunR, Mordike BL, et al., 2004, 334/335: 517- 523.

[8] Pakieła W, Tanski T, Pawlyta M, et al. The structure and mechanical properties of AlMg5Si2Mn alloy after surface alloying by the use of fiber laser[J]. Applied Physics A, 2018, 124(3): 263.

[9] Sharma A K, Gupta D. On microstructure and flexural strength of metal-ceramic composite cladding developed through microwave heating[J]. Applied Surface Science, 2012, 258(15): 5583-5592.

[10] Kadolkar P, Dahotre N B. Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys[J]. Materials Science and Engineering: A, 2003, 342(1/2): 183-191.

[11] Zhou S F, Huang Y J, Zeng X Y. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot[J]. Applied Surface Science, 2008, 254(10): 3110-3119.

[12] Emamian A, Corbin S F, Khajepour A. The effect of powder composition on the morphology of in situ TiC composite coating deposited by Laser-Assisted Powder Deposition (LAPD)[J]. Applied Surface Science, 2012, 261: 201-208.

[13] 刘智恩. 材料科学基础[M]. 3版. 西安: 西北工业大学出版社, 2013.

    Liu ZE. Material science[M]. 3rd ed. Xi'an: Northwestern Polytechnical University Press, 2013.

[14] Kadolkar P, Dahotre N B. Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys[J]. Applied Surface Science, 2002, 199: 222-233.

[15] 刘颖卓, 党波, 刘峰. 冷却速率对A356铝合金显微组织和微观硬度的影响[J]. 西安工业大学学报, 2013, 33(2): 128-133.

    Liu Y Z, Dang B, Liu F. Effects of cooling rate on microstructure and microhardness of A356 alloy[J]. Journal of Xi'an Technological University, 2013, 33(2): 128-133.

[16] 高士学, 孙跃军, 高艳静. 稀土La对A356铝合金组织及硬度的影响[J]. 热加工工艺, 2016, 45(5): 81-83.

    Gao S X, Sun Y J, Gao Y J. Effects of La on microstructure and hardness of A356 aluminium alloy[J]. Hot Working Technology, 2016, 45(5): 81-83.

[17] 何兵, 覃铭, 李德贵, 等. 固溶时间对含钪A356铝合金组织与力学性能的影响[J]. 金属热处理, 2018, 43(3): 185-189.

    He B, Qin M, Li D G, et al. Effects of solution time on microstructure and mechanical properties of A356 aluminium alloy containing Sc[J]. Heat Treatment of Metals, 2018, 43(3): 185-189.

[18] Apps P J, Berta M, Prangnell P B. The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains[J]. Acta Materialia, 2005, 53(2): 499-511.

[19] Fadavi Boostani A, Tahamtan S. Fracture behavior of thixoformed A356 alloy produced by SIMA process[J]. Journal of Alloys and Compounds, 2009, 481(1/2): 220-227.

[20] 易有福, 龙思远, 徐绍勇, 等. 低压铸造A356铝合金轮毂的微观组织和力学性能[J]. 特种铸造及有色合金, 2008, 28(5): 373-375.

    Yi Y F, Long S Y, Xu S Y, et al. Microstructure and mechanical properties of low-pressure casting A356 aluminum alloy wheel hub[J]. Special Casting & Nonferrous Alloys, 2008, 28(5): 373-375.

[21] Katipelli L R, Agarwal A, Dahotre N B. Interfacial strength of laser surface engineered TiC coating on 6061 Al using four-point bend test[J]. Materials Science and Engineering: A, 2000, 289(1/2): 34-40.

[22] 孙训方, 方孝淑, 陆耀洪. 材料力学[M]. 3版. 北京: 高等教育出版社, 2012.

    Sun XF, Fang XS, Lu YH. Mechanics of materials[M]. 3rd ed. Beijing: Higher Education Press, 2012.

王建刚, 高士友, 陈旭升, 张梦雨. 激光重熔A356铝合金表面的力学性能[J]. 中国激光, 2020, 47(4): 0402002. Wang Jiangang, Gao Shiyou, Chen Xusheng, Zhang Mengyu. Mechanical Properties of A356 Aluminum Alloy after Laser Surface Remelting[J]. Chinese Journal of Lasers, 2020, 47(4): 0402002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!