人工晶体学报, 2020, 49 (10): 1765, 网络出版: 2021-01-09   

MPCVD单晶金刚石初始及断续生长界面的表征与分析

Characterization and Analysis of the Initial and Intermittent Growth Interfaces of MPCVD Single Crystal Diamond
作者单位
1 哈尔滨工业大学航天学院,哈尔滨 150001
2 上海卫星装备研究所,上海 200240
摘要
采用微波等离子体化学气相沉积(MPCVD)技术制备的大尺寸、高质量单晶金刚石材料具备卓越的物理化学性能,在珠宝、电子、核与射线探测等消费品、工业和**科技领域极具应用前景。研究发现在化学气相沉积单晶金刚石生长过程中,在衬底与外延层之间,以及生长中途停止-继续生长的生长层之间出现明显的界面区。本文采用偏光显微镜、拉曼光谱、荧光光谱(PL)等手段对界面区域进行了测试分析,界面区在偏光显微镜下表现出因应力导致的亮区,且荧光光谱(PL)及其线扫描显示该区域的NV色心含量远高于衬底及其前后外延层,表明该界面区具有较高的缺陷和杂质含量。结果表明在生长高品质单晶金刚石初期就应当采取一定手段进行品质调控,并尽量在一个生长周期内完成制备。
Abstract
Large-size and high-quality single crystal diamond synthesized by microwave plasma chemical vapor deposition (MPCVD) have excellent physical and chemical properties, which makes them have great application prospects in jewelry, electronics, nuclear and ray detection and other industry fields. During CVD single crystal diamond growth, it is found that there is an obvious interface between the substrate and the epitaxial layer, as well as between the multiple growth layers which stop-continue to grow. The interface region was analyzed by polarization microscope, Raman spectra and photoluminescence spectra(PL). The bright image under polarization microscope and higher content of NV color centers compared with substrate and its epitaxial layers indicate that the interface area has high defect and impurity content. The results show that some measures should be taken to control the quality of high-quality single crystal diamond at the initial stage, and the preparation should be completed in one growth cycle as far as possible.
参考文献

[1] Liu K, Zhao J, Sun H, et al. Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance[J]. Chinese Physics B, 2019, 28(6): 060701.

[2] Shikata S. Single crystal diamond wafers for high power electronics[J]. Diamond & Related Materials, 2016, 65: 168-175.

[3] Dai B, Zhao J, Ralchenko V, et al. Thermal conductivity of free-standing CVD diamond films by growing on both nuclear and growth sides[J]. Diamond & Related Materials, 2017, 76: 9-13.

[4] Rogalin V E, Ashkinazi E E, Popovich A F, et al. Behavior of the water-cooled polycrystalline diamond plate at extreme densities of laser radiation[J]. Physics of Wave Phenomena, 2018, 26(2): 75-84.

[5] Kononenko T, Sovyk D, Pivovarov P, et al. Fabrication of diamond diffractive optics for powerful CO2 lasers via replication of laser microstructures on silicon template[J]. Diamond & Related Materials, 2020, 101: 107656.

[6] Aharonovich I, Greentree A D, Prawer S. Diamond photonics[J]. Nature Photonics, 2011, 5(7): 397.

[7] Chang X, Wang Y F, Zhang X, et al. Iridium size effects in localized surface plasmon-enhanced diamond UV photodetectors[J]. Applied Surface Science, 2019, 487: 674-677

[8] Liu K, Dai B, Ralchenko V, et al. Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity[J]. Sensors and Actuators A: Physical, 2017, 259: 121-126.

[9] D’Haenens-Johansson U F S, Katrusha A, Moe K S, et al. Large colorless HPHT-Grown synthetic gem diamonds from new diamond technology, Russia[J]. Gems & Gemology, 2015, 51(3): 111214044.

[10] Tallaire A, Mille V, Brinza O, et al. Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from new diamond technology[J]. Diamond & Related Materials, 2017, 77: 146-152.

[11] Bolshakov A P, Ralchenko V G, Yurov V Y, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation[J]. Diamond & Related Materials, 2016, 62: 49-57.

[12] Yan C S, Vohra Y K, Mao H K, et al. Very high growth rate chemical vapor deposition of single-crystal diamond[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 12523-12525.

[13] Nad S, Gu Y, Asmussen J. Growth strategies for large and high quality single crystal diamond substrates[J]. Diamond & Related Materials, 2015, 60: 26-34.

[14] Nad S, Charris A, Asmussen J. MPACVD growth of single crystalline diamond substrates with PCD rimless and expanding surfaces[J]. Applied Physics Letters, 2016, 109(16): 162103

[15] Li Y, Liu X, Shu G, et al. Thinning strategy of substrates for diamond growth with reduced PCD rim: design and experiments[J]. Diamond & Related Materials, 2019, 101: 107574

[16] Teraji T, Yamamoto T, Watanabe K, et al. Homoepitaxial diamond film growth:high purity, high crystalline quality, isotopic enrichment and single color center formation[J]. Physica Status Solidi A, 2015, 212(11): 2365-2384

[17] Teraji T. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition[J]. Journal of Applied Physics, 2015, 118(11): 115304

[18] Mokuno Y, Chayahara A, Soda Y, et al. High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition[J]. Diamond & Related Materials, 2006, 15(4/8): 455-459.

[19] Mokuno Y, Chayahara A, Soda Y, et al. Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diamond & Related Materials, 2005, 14(11/12): 1743-1746.

[20] Tallaire A, Barjon J, Brinza O, et al. Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond[J]. Diamond & Related Materials, 2011, 20(7): 875-881.

李一村, 舒国阳, 刘刚, 郝晓斌, 赵继文, 张森, 刘康, 曹文鑫, 代兵, 杨磊, 朱嘉琦, 曹康丽, 韩杰才. MPCVD单晶金刚石初始及断续生长界面的表征与分析[J]. 人工晶体学报, 2020, 49(10): 1765. LI Yicun, SHU Guoyang, LIU Gang, HAO Xiaobin, ZHAO Jiwen, ZHANG Sen, LIU Kang, CAO Wenxin, DAI Bing, YANG Lei, ZHU Jiaqi, CAO Kangli, HAN Jiecai. Characterization and Analysis of the Initial and Intermittent Growth Interfaces of MPCVD Single Crystal Diamond[J]. Journal of Synthetic Crystals, 2020, 49(10): 1765.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!