作者单位
摘要
1 1.哈尔滨工业大学 航天学院, 哈尔滨 150000
2 2.深圳市恒运昌真空技术有限公司, 深圳 518000
微波等离子体化学气相沉积(Microwave plasma chemical vapor deposition, MPCVD)技术是制备大尺寸、高品质单晶金刚石的理想途径, 然而MPCVD单晶金刚石生长过程的复杂性与晶体生长需求的多样性难以对生长过程进行优化设计。针对此问题, 本研究提出了一种基于等离子体诊断技术的MPCVD单晶金刚石生长的系统性设计方法, 采用等离子体成像和光谱分析对微波等离子体进行量化诊断。并利用自主研发的MPCVD设备, 研究了腔室压力-微波功率-等离子体性状-衬底温度间的物理耦合特性和量化关系, 得到了不同参数下的等离子体有效长轴尺寸、基团浓度和分布、能量密度等数据, 以实验观测数据为基础拟合得到了单晶金刚石生长工艺图谱。根据此工艺图谱, 可以通过选择生长温度和所需生长面积来选取工艺参数, 且通过实验验证, 表明此图谱具有较强的指导意义, 预测参数误差小于5%。同时根据该图谱的预测, 研究了不同等离子体能量密度下的单晶金刚石生长情况, 在较低功率下(2600 W)也得到了较高的能量密度(148.5 W/cm3), 含碳前驱体的浓度也高于其他工艺条件, 因而获得了较高的生长速率(8.9 μm/h)。此套方法体系可以针对不同单晶金刚石生长需求进行有效的等离子体调控和工艺优化。
MPCVD 单晶金刚石生长 等离子体 生长参数优化 MPCVD single crystal diamond growth plasma optimization of growth parameters 
无机材料学报
2023, 38(12): 1405
作者单位
摘要
1 1.哈尔滨工业大学 航天学院, 哈尔滨 150000
2 2.湖北碳六科技有限公司, 宜昌 443000
单晶金刚石是一种性能优异的晶体材料, 在先进科学领域具有重要的应用价值。在微波等离子体化学气相沉积(Microwave plasma chemical vapor deposition, MPCVD)单晶金刚石生长中, 如何提高晶体的生长速率一直是研究者们关注的重点问题之一, 而采用高能量密度的等离子体是提高单晶金刚石生长速率的有效手段。在本研究中, 首先通过磁流体动力学(Magnetohydrodynamic, MHD)模型仿真计算, 优化设计了特殊的等离子体聚集装置; 随后基于模拟结果进行生长实验, 采用光谱分析和等离子体成像对等离子体性状进行了研究, 制备了单晶金刚石生长样品; 并通过光学显微镜、拉曼光谱对生长样品进行测试。模拟结果显示, 聚集条件下的核心电场和电子密度是普通条件下的3倍; 生长实验结果显示, 在常规的微波功率(3500 W)、生长气压(18 kPa)下得到的高能量密度(793.7 W/cm3)的等离子体与模型计算结果吻合。高能量密度生长条件并不会对生长形貌产生较大影响, 但加入一定量氮气能够显著改变生长形貌, 并对晶体质量产生影响。采用这种方法, 成功制备了高速率(97.5 μm/h)单晶金刚石。不同于通过增大生长气压来获得高能量密度的途径, 本研究在常规的生长气压和微波功率下也可以生长高能量密度单晶金刚石。
MPCVD单晶金刚石生长 高能量密度 高生长速率 等离子体仿真 MPCVD single crystal diamond growth high energy density high growth rate plasma simulation 
无机材料学报
2023, 38(3): 303
作者单位
摘要
哈尔滨工业大学,特种环境复合材料技术国家级重点实验室,哈尔滨 150080
单晶金刚石作为一种性能优异的半导体材料,在功率器件、深空探测等领域具有广阔的应用前景。然而采用微波等离子体化学气相沉积(MPCVD)法制备的单晶金刚石通常含有大量的缺陷,尤其是位错,严重限制了其电学性能的发挥。横向外延生长是半导体材料中常用的缺陷调控方法,近年也被应用于金刚石材料制备领域。本研究首先通过金属催化等离子体刻蚀在单晶金刚石籽晶上构造图形阵列,从而为同质外延单晶制备创造横向生长条件;随后通过MPCVD法在此基础上进行单晶金刚石制备,研究了横向外延生长过程并对样品进行了激光共聚焦显微镜、偏光显微镜、Raman光谱和缺陷密度测试。测试表明该方法能够稳定可控的制备图形化生长所需的阵列并降低生长层的缺陷密度。
微波等离子体化学气相沉积 单晶金刚石 横向外延 缺陷调控 microwave plasma chemical vapor deposition single crystal diamond lateral epitaxy defect control 
硅酸盐学报
2023, 51(6): 1374
作者单位
摘要
1 哈尔滨工业大学,特种环境复合材料技术国家级重点实验室,哈尔滨 150080
2 南京电子器件研究所,微波毫米波单片集成和模块电路重点实验室,南京 210006
3 哈尔滨工业大学,微系统与微结构制造教育部重点实验室,哈尔滨 150080
随着第3代半导体的应用,电子器件向高功率、小型化发展,由此带来的“热”问题逐渐凸显,金刚石由于其超高的热导率及稳定的性质,被认为是最优的散热材料之一。简要介绍了微波等离子体化学气相沉积装备的原理及发展历程,对比分析了不同种类生长设备的差异,对单晶、多晶及纳米晶金刚石在器件散热应用中的现状进行总结,结合第3代半导体总结了金刚石增强散热产业化过程中将面临的性能与尺寸方面的瓶颈问题及金刚石材料“大、纯、快”的发展方向,并对散热应用的未来研究方向做出展望。
金刚石 微波等离子体化学气相沉积 散热 氮化镓器件 diamond microwave plasma chemical vapor deposition heat dissipation gallium nitride devices 
硅酸盐学报
2022, 50(7): 1852
作者单位
摘要
1 特种环境复合材料技术国家级重点实验室(哈尔滨工业大学),哈尔滨 150001
2 哈尔滨工业大学分析测试中心,哈尔滨 150001
3 微系统与微结构制造教育部重点实验室(哈尔滨工业大学),哈尔滨 150001
微机电系统、深空、深海探测任务等对于长效、便携电源提出了更高的要求。同位素电池由于其能量密度高、功率输出稳定,可以在高低温、无太阳光照等极端环境下持续不断地为月球车、海底探测器等提供能量。作为同位素电池中的主要类型,辐射伏特效应同位素电池由于其理论能量转换效率高、易于微型化被广泛研究,并已经成功应用于心脏起搏器。宽禁带的半导体换能结器件制作的同位素电池能够获得更高的能量转换效率。宽禁带半导体中的代表金刚石具有5.5 eV的禁带宽度与耐辐射的特性,使其成为制作辐射伏特效应同位素电池换能结器件的最佳选择。随着化学气相沉积技术的发展,金刚石晶体的外延技术突飞猛进,为金刚石半导体器件的发展打下了材料基础。本文对比了常见的同位素电池换能结用半导体材料和辐射源材料的特性,介绍了辐射伏特效应的基本原理,接着对辐射伏特效应同位素电池的关键参数进行了分析,并汇总了有关金刚石辐射伏特效应同位素电池研究的文献,通过各个参数,如开路电压、转换效率等的对比,指出了目前金刚石同位素电池发展的状态与存在的问题。通过分析金刚石与其他n型半导体材料组成的异质pn结目前的性能与应用情况,给出了基于金刚石异质pn结的高性能同位素电池的结构设计,并进行了总结与展望。
同位素电池 辐射伏特效应 金刚石 肖特基器件 开路电压 半导体换能结 转换效率 isotope battery radio-voltaic effect diamond Schottky diode open circuit voltage semiconductor material for energy converter conversion efficiency 
人工晶体学报
2022, 51(5): 801
作者单位
摘要
1 哈尔滨工业大学航天学院,哈尔滨 150001
2 上海卫星装备研究所,上海 200240
采用微波等离子体化学气相沉积(MPCVD)技术制备的大尺寸、高质量单晶金刚石材料具备卓越的物理化学性能,在珠宝、电子、核与射线探测等消费品、工业和**科技领域极具应用前景。研究发现在化学气相沉积单晶金刚石生长过程中,在衬底与外延层之间,以及生长中途停止-继续生长的生长层之间出现明显的界面区。本文采用偏光显微镜、拉曼光谱、荧光光谱(PL)等手段对界面区域进行了测试分析,界面区在偏光显微镜下表现出因应力导致的亮区,且荧光光谱(PL)及其线扫描显示该区域的NV色心含量远高于衬底及其前后外延层,表明该界面区具有较高的缺陷和杂质含量。结果表明在生长高品质单晶金刚石初期就应当采取一定手段进行品质调控,并尽量在一个生长周期内完成制备。
单晶金刚石 微波导离子体化学气相沉积 界面 拉曼光谱 PL光谱 single crystal diamond microwave plasma chemical vapor deposition (MPCVD) interface Raman spectrum PL spectrum 
人工晶体学报
2020, 49(10): 1765
作者单位
摘要
哈尔滨工业大学航天学院, 哈尔滨 150001
微波等离子体化学气相沉积(MPCVD)技术被认为是制备大尺寸高品质单晶金刚石的理想手段之一。然而其较低的生长速率(~10 μm/h)以及较高的缺陷密度(103~107 cm-2)是阻碍MPCVD单晶金刚石应用的主要因素, 经过国内外研究团队数十年的不懈努力, 在高速率生长和高品质生长两个方面都取得了众多成果。但是除此之外还需解决高速率与高品质生长相统一的问题, 才能实现MPCVD单晶金刚石的高端应用价值。
MPCVD单晶金刚石 高速率 高品质 MPCVD single crystal diamond high growth rate high growth quality 
人工晶体学报
2020, 49(6): 979

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!