光电工程, 2020, 47 (4): 190436, 网络出版: 2020-05-27  

多场景下基于快速相机标定的柱面图像拼接方法

Cylindrical image mosaic method based on fast camera calibration in multi-scene
作者单位
1 宁波大学机械工程与力学学院,浙江 宁波 315211
2 上海浦江桥隧运营管理有限公司,上海 200023
3 宁波诠航机械科技有限公司,浙江 宁波 315200
摘要
针对目前利用相机标定参数进行图像拼接的方法存在受场景限制大、标定过程复杂而耗时长的问题,提出一种多场景下基于快速相机标定的柱面图像拼接方法。首先,利用棋盘格标定板角点特征提取精度高的特点,使其分别位于两两邻接图像的重叠视场中,对该图像序列依次进行角点提取、精确化和匹配等预处理,以准确快速求解出待拼接图像间的配准参数;然后利用标定得到的配准参数快速拼接图像,通过柱面投影以保持图像的视觉一致性,并采用多频段融合以保留图像的细节信息;最后,将整个系统搭建在低功耗嵌入式平台,实现可在多场景下完成快速标定及基于标定参数的拼接过程。实验结果表明,该文方法在室内及隧道等场景下可准确快速完成相机标定,图像拼接过程耗时短,同时可保证较高的拼接精度和较好的成像效果,具有较强的鲁棒性。
Abstract
A cylindrical image mosaic method based on fast camera calibration in multi-scene is proposed to solve the problems of scene limitation and complex calibration process in image mosaic using camera calibration parameter. Firstly, the accurate corner feature of checkerboard calibration board is used to make it in the overlapping field of view of two adjacent images. Then, the image sequence is pre-processed by corner extraction, precision and matching, so that the registration parameters between the images to be stitched can be solved accurately and quickly. After that, the cylindrical projection is used to maintain the visual consistency of the images, and the multi-band fusion is used to retain the details of the images. Subsequently, the images are stitched using registration parameters obtained by calibration. Finally, the whole system is built on a low-power embedded platform to accomplish fast calibration and mosaic process based on calibration parameters in multi-scene. The experiment results show that the proposed method can accomplish camera calibration quickly and accurately in indoor and tunnel scenarios, and the image mosaic process is time-consuming. Meanwhile, it can ensure better stitching accuracy and imaging effect, and has strong robustness.
参考文献

[1] Adel E, Elmogy M, Elbakry H. Image stitching based on feature extraction techniques: a survey[J]. International Journal of Computer Applications, 2014, 99(6): 1–8.

[2] Cheng Y F, Jin S Y, Wang M, et al. Image mosaicking approach for a double-camera system in the GaoFen2 optical remote sensing satellite based on the big virtual camera[J]. Sensors, 2017, 17(6): E1441.

[3] Bosch J, Gracias N, Ridao P, et al. Omnidirectional underwater camera design and calibration[J]. Sensors, 2015, 15(3): 6033–6065.

[4] 陈晨涛, 潘之玮, 沈会良, 等. 一种人体热红外图像拼接及部位划分方法[J]. 光电工程, 2019, 46(9): 180689.

    Chen C T, Pan Z W, Shen H L, et al. Image stitching and partitioning algorithms for infrared thermal human-body images[J]. Opto-Electronic Engineering, 2019, 46(9): 180689.

[5] Kaynig V, Fischer B, Müller E, et al. Fully automatic stitching and distortion correction of transmission electron microscope images[J]. Journal of Structural Biology, 2010, 171(2): 163–173.

[6] 吴丽萍, 胡郁. 柱面全景图图像拼接中图像平滑的虚拟现实技术[J]. 科学技术与工程, 2017, 17(31): 271–276.

    Wu L P, Hu Y. Virtual reality technology of image smoothing in cylindrical panoramic image mosaic[J]. Science Technology and Engineering, 2017, 17(31): 271–276.

[7] Seo S, Jeonz S, Lee S. Efficient homography estimation method for panorama[C]//Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, 2013: 209–212.

[8] Szeliski R. Video mosaics for virtual environments[J]. IEEE Computer Graphics and Applications, 1996, 16(2): 22–30.

[9] Zou L H, Chen J, Zhang J, et al. An image mosaicing approach for video sequences based on space-time manifolds[C]//Proceedings of the 29th Chinese Control Conference, 2010.

[10] Li L N, Geng N. Algorithm for sequence image automatic mosaic based on sift feature[C]//Proceedings of 2010 Wase International Conference on Information Engineering, 2010.

[11] Wu Z W, Zhu L R, Sun X C. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm[J]. Optical Engineering, 2015, 54(5): 053101.

[12] Zhou A W, Shao W, Guo J J. An image mosaic method for defect inspection of steel rotary parts[J]. Journal of Nondestructive Evaluation, 2016, 35(4): 60.

[13] Alomran M, Chai D. Feature-based panoramic image stitching[C]//Proceedings of 2016 14th International Conference on Control, 2016.

[14] 张金玲, 孙汉旭, 贾庆轩, 等. 基于相机标定的图像拼接算法[J]. 中北大学学报(自然科学版), 2008, 29(6): 575–579.

    Zhang J L, Sun H X, Jia Q X, et al. Image mosaic algorithm based on camera calibration[J]. Journal of North University of China (Natural Science Edition), 2008, 29(6): 575–579.

[15] 王冬, 刘凤英, 陈天恩, 等. 一种相机标定参数的柱面全景影像拼接方法[J]. 测绘科学, 2016, 41(7): 150–154, 143.

    Wang D, Liu F Y, Chen T E, et al. The method of cylinder panoramic image mosaic based on camera calibration parameters[J]. Science of Surveying and Mapping, 2016, 41(7): 150–154, 143.

[16] 马嘉琳, 张锦明, 孙卫新. 基于相机标定的全景图拼接方法研究[J]. 系统仿真学报, 2017, 29(5): 1112–1119.

    Ma J L, Zhang J M, Sun W X. Research on panoramic image mosaic method based on camera calibration[J]. Journal of System Simulation, 2017, 29(5): 1112–1119.

[17] Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999.

[18] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. Cambridge university press, 2003

[19] Chuan Z, Long T D, Feng Z, et al. A planar homography estimation method for camera calibration[C]//Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium, 2003.

[20] Lenth R V. Least-squares means: the R package lsmeans[J]. Journal of Statistical Software, 2016, 69(1): 1–33.

[21] Janota A, ?imák V, Nemec D, et al. Improving the precision and speed of euler angles computation from low-cost rotation sensor data[J]. Sensors, 2015, 15(3): 7016–7039.

[22] Pulli K, Baksheev A, Kornyakov K, et al. Real-time computer vision with OpenCV[J]. Communications of the ACM, 2012, 55(6): 61–69.

[23] Xu Y, Zhou Q H, Gong L W, et al. High-speed simultaneous image distortion correction transformations for a multicamera cylindrical panorama real-time video system using FPGA[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(6): 1061–1069.

[24] 郭海霞, 郭海龙, 解凯. 基于边缘信息改进的双线性插值算法[J]. 计算机工程与应用, 2011, 47(31): 171–174.

    Guo H X, Guo H L, Xie K. Improved bilinear interpolation algorithm based on edge information[J]. Computer Engineering and Applications, 2011, 47(31): 171–174.

[25] 郭治成, 党建武, 王阳萍, 等. 基于多特征融合的背景建模方法[J]. 光电工程, 2018, 45(1 DOI: 10.12086/oee.2020.190661

    Guo Z C, Dang J W, Wang Y P, et al. Background modeling method based on multi-feature fusion[J]. Opto-Electronic Engineering, 2018, 45(12): 180206.

[26] Brown M, Lowe D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59–73.

傅子秋, 张晓龙, 余成, 梁丹, 梁冬泰. 多场景下基于快速相机标定的柱面图像拼接方法[J]. 光电工程, 2020, 47(4): 190436. Fu Ziqiu, Zhang Xiaolong, Yu Chen, Liang Dan, Liang Dongtai. Cylindrical image mosaic method based on fast camera calibration in multi-scene[J]. Opto-Electronic Engineering, 2020, 47(4): 190436.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!