人工晶体学报, 2020, 49 (9): 1631, 网络出版: 2020-11-11   

基于载流子选择性接触的N型晶硅电池钝化特性研究

Passivation Characteristics of N-Type Crystal Silicon Cell Based on Carrier Selective Contact
作者单位
1 国家电投集团西安太阳能电力有限公司,西安 710100
2 西安理工大学电子工程系,西安 710048
摘要
为了研究载流子选择性接触结构在N型晶硅电池钝化特性,本文设计了专门的材料结构。分析对比了不同掺杂浓度分布的材料结构在退火后、沉积SiNx∶H薄膜后及烧结后隐开路电压值的变化,并对其钝化机理进行了分析。研究结果表明隐开路电压值对掺杂浓度分布非常敏感。随着掺杂浓度分布进入硅基体的“穿透”深度增加,相对应地退火后、SiNx∶H薄膜沉积后及烧结后隐开路电压值均呈现先增加后减小的趋势,且样片沉积SiNx∶H薄膜后隐开路电压的增加幅度也逐渐减小,而样片烧结后隐开路电压值又出现不同幅度的下降,且隐开路电压值的下降幅度逐渐减小。通过适当的掺杂工艺,可以使得烧结后的隐开路电压均值达到738 mV。
Abstract
In order to study the passivation characteristics of the carrier selective contact structure in N-type crystalline silicon cells, a special material structure was designed. The change of implied open circuit voltage after annealing, deposition of SiNx∶H film and sintering of the materials structure with different doping concentration distribution were compared and the passivation mechanism was analyzed. The results show that the implied open circuit voltage is very sensitive to the doping concentration distribution of structure. The ‘penetrating diffusion’ increase across poly-Si/SiOx into the c-Si base, the corresponding implied open circuit voltage increases firstly and decreases later after annealing, SiNx∶H film deposition and sintering. After the samples were deposited with SiNx∶H thin film, the increase of the implied open circuit voltage gradually decreases; and the value of implied open circuit voltage samples show a tends to decline after sintering, and the declining trend of the implied open circuit voltage gradually decreases. When a suitable doping process is selected, the average value of the implied open circuit voltage can reach 738 mV after firing.
参考文献

[1] Lee J Y, Glunz S W. Investigation of various surface passivation schemes for silicon solar cells[J].Solar Energy Materials & Solar Cells,2006,90(1):82-92.

[2] 陈俊帆,赵生盛,高 天,等.高效单晶硅太阳电池的最新进展及发展趋势[J].材料导报,2019,33(1):113-119.

[3] Richter A, Benick J, Feldmann F, et al. n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J].Sol. Energy Mater. Sol. Cells,2017,173:96-105.

[4] Chen Y F, Chen D M, Liu C F, et al. Mass production of industrial tunnel oxide passivated contacts (i-TOPCon) silicon solar cells with average efficiency over 23% and modules over 345W[J].Progress in Photovoltaics:Research and Applications,2019,27(10):827-834

[5] Glunz S W, Feldmann F, Richter A, et al. The irresistible charm of a simple current flow pattern-25% with a solar cell featuring a full-area back contact[C]//Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition,2015:259-263.

[6] Feldmann F, Bivour M, Reichel C, et al. Tunnel oxide passivated contacts as an alternative to partial rear contacts[J].Solar Energy Materials and Solar Cells,2014,131:46-50.

[7] Tao Y, Upadhyaya V, Jones K, et al. Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity[J].AIMS Materials Science,2016,3(1):180-189.

[8] Guangtao Yanga, Peiqing Guoa, Paul Procel, et al. High-effciency black IBC c-Si solar cells with poly-Si as carrier-selective passivating contacts[J].Solar Energy Materials and Solar Cells,2018,186:9-13.

[9] Quan C, Zeng Y, Wang D, et al. Computational analysis of a high-efficiency tunnel oxide passivated contact (TOPCon) solar cell with a low-work-function electron-selective-collection layer[J].Solar Energy,2018,170(AUG.):780-787.

[10] Tao Y G, Upadhyaya V, Chen C W, et al. Large area tunnel oxide passivated rear contact n-type Si solar cells with 21.2% efficiency[J].Progress in Photovoltaics Research & Applications, 2016,24:830-835.

[11] Yang G, Ingenito A, Hameren N V, et al. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells[J]. Applied Physics Letters,2016,108(3):033903.1-033903.4.

[12] Stavola M, Jiang F, Kleekajai S, et al. Hydrogen passivation of defects in crystalline silicon solar cells[J]. Mrs Proceedings,2009,1210:1210-Q01-01.

[13] Sang Hee Lee, Muhammad Fahad Bhopal, Doo Won Lee, et al. Review of advanced hydrogen passivation for high efficient crystalline silicon solar cells[J].Materials Science in Semiconductor Processing,2018,79:66-73.

[14] Yelundur V, Rohatgi A, Ebong A, et al. Al-enhanced PECVD SiNx induced hydrogen passivation in string ribbon silicon[C]//Photovoltaic Specialists Conference,2000:91-94.

[15] 王晓泉, 杨德仁. 氢等离子体钝化多晶硅的初步研究[C]//中国光伏会议,2002:296-298.

[16] Stodolny M K, Anker J, Geerligs B L J, et al. Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells[J].Energy Procedia,2017,124:635-642.

[17] Yang G, Guo P, Procel P, et al. Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cells[J].Applied Physics Letters, 2018,112(19):193904.

[18] Yang G, Ingenito A, Hameren N V, et al. Design and application of ion-implanted poly Si passivating contacts for interdigitated back contact c-Si solar cells[J].Applied Physics Letters, 2016,108(3):033903.1-033903.4.

张天杰, 刘大伟, 倪玉凤, 杨露, 魏凯峰, 宋志成, 林涛. 基于载流子选择性接触的N型晶硅电池钝化特性研究[J]. 人工晶体学报, 2020, 49(9): 1631. ZHANG Tianjie, LIU Dawei, NI Yufeng, YANG Lu, WEI Kaifeng, SONG Zhicheng, LIN Tao. Passivation Characteristics of N-Type Crystal Silicon Cell Based on Carrier Selective Contact[J]. Journal of Synthetic Crystals, 2020, 49(9): 1631.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!