红外与毫米波学报, 2016, 35 (2): 133, 网络出版: 2016-05-11  

离子束溅射法制备碳化锗薄膜的红外光学特性和力学特性

The infrared optical and mechanical properties of germanium carbide films prepared by ion beam sputtering
作者单位
1 天津大学 电子信息工程学院,天津300072
2 中国航天科工飞航技术研究院 天津津航技术物理研究所 天津市薄膜光学重点实验室, 天津300308
摘要
采用离子束溅射法通过在CH4和Ar 的混合气体中溅射Ge靶材制备碳化锗(Ge1-xCx)薄膜.分别通过原子力显微镜、拉曼光谱和X射线光电子能谱、傅里叶变换红外光谱以及纳米压痕测试研究了薄膜的表面形貌、化学结构、光学特性和力学特性.同时分析了制备薄膜时的离子源束压和薄膜性质之间的关系.结果表明,薄膜的粗糙度随束压的增大而减小.在较高束压下制备的薄膜含有较少的C元素和较多的Ge-C键.薄膜具有非常好的红外光学特性和力学特性.薄膜在较大波长范围内具有良好的透光性能.C元素含量随着束压的升高而降低,进而导致薄膜的折射率在束压从300 V增大到800 V的过程中逐渐升高.薄膜的硬度大于8 GPa.由于薄膜中的Ge-C键代替了C-C 键和C-Hn键,薄膜的硬度随束压的增加逐渐增加.
Abstract
Germanium carbon (Ge1-xCx) thin films were deposited by ion beam sputtering deposition of Ge target in a CH4/Ar discharge. The surface morphology, chemical structure, infrared optical and mechanical properties of the Ge1-xCx films were investigated by atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared (FTIR) spectroscopy and nano-indentation, respectively. The relationship between ion beam voltage and film properties was discussed. The results show that the surface roughness decreases with increasing of the ion beam voltage. The film deposited at a higher voltage has lower carbon content and higher fraction of Ge-C bonds. The film has excellent infrared optical and mechanical properties. The films show good transparent over a wide range. Due to the content of the carbon decreasing with increasing of voltage, the refractive index increases obviously as the ion beam voltage increases from 300 V to 800 V. The hardness of the film is above 8 GPa. With the Ge-C bonds instead of the C-C bonds and C-Hn bonds, the hardness of the film increases with increasing ion beam voltage.
参考文献

[1] Zhu J Q, Jiang C Z, Han X, et al. Multilayer antireflective and protective coatings comprising amorphous diamond and amorphous hydrogenated germanium carbide for ZnS optical elements [J]. Thin Solid Films, 2008, 516(10): 3117-3122.

[2] Wu X W, Zhang W J, Yan L Q, et al. The deposition and optical properties of Ge1-xCx thin film and infrared multilayer antireflection coatings [J]. Thin Solid Films, 2008 516(10): 3189-3195.

[3] Hu C Q, Zheng W T, Li J J, et al. Ge1-xCx double-layer antireflection and protection coatings [J]. Appl. Surf. Sci, 2006, 252(23): 8135-8138.

[4] LI Yang-Ping, LIU Zheng-Tang, LIU Wen-Ting, et al. Preparation and properties of GeC thin films deposited by reactive RF magnetron sputtering [J]. Acta Phys. Sin (李阳平,刘正堂,刘文婷,等. GeC薄膜的射频反应磁控溅射制备及性质. 物理学报), 2008, 57(10): 6587-6592.

[5] Kelly C J, Orr J S, Gordon H, et al. Application of germanium carbide in durable multilayer IR coatings [J]. Proc. SPIE, 1990, 1275: 122-134.

[6] Vilcarromero J, Marques F C. Hardness and elastic modulus of carbon-germanium alloys [J]. Thin Solid Films, 2001, 398-399: 275-278.

[7] Hu C Q, Zhu J Q, Zheng W T, et al. Annealing effects on the bonding structures, optical and mechanical properties for radio frequency reactive sputtered germanium carbide films [J]. Appl. Surf. Sci, 2009, 255(6): 3552-3557.

[8] SONG Jian-Quan, LIU Zheng-Tang, YU Zhong-Qi, et al. Application of GexC1-x films to design and deposition of infrared antireflection and protection films [J]. J Infra Milli Wavs (宋建全,刘正堂,于忠奇,等. GexC1-x薄膜在红外增透保护膜系设计和制备中的应用. 红外与毫米波学报), 2000, 19(4): 266-268.

[9] SONG Jian-Quan, LIU Zheng-Tang, YU Zhong-Qi, et al. Antireflective and protective films preparation on ZnS dome [J]. J Infra Milli Wavs (宋建全,刘正堂,于忠奇,等. ZnS头罩增透保护膜系制备. 红外与毫米波学报), 2001, 20(3): 203-206.

[10] Okinaka M, Hamana Y, Tokuda T, et al. MBE growth mode and C incorporation of GeC epilayers on Si(0 0 1) substrates using an arc plasma gun as a novel C source [J]. J. Cryst. Growth, 2003, 249(1-2): 78-86.

[11] Gazicki M, Janowska G. Thermal stability of semiconducting thin germanium/carbon alloy films produced from tetraethylgermanium in an RF glow discharge [J]. Thin Solid Films, 1999, 352(1-2): 6-8.

[12] Szmidt J, Gazicki-Lipman M, Szymanowski H, et al. Electrophysical properties of thin germanium/carbon layers produced on silicon using organometallic radio frequency plasma enhanced chemical vapor deposition process [J]. Thin Solid Films, 2003, 441(1-2): 192-199.

[13] Tyczkowski J, Ledzion R. Electronic band structure of insulating hydrogenated carbon-germanium films [J]. J. Appl. Phys, 1999, 86(8): 4412-4418.

[14] Zoita C N, Grigorescu C E A, Vasiliu I C, et al. Influence of process parameters on structure and optical properties of GeC thin films deposited by RF magnetron sputtering [J]. Thin Solid Films, 2011, 519(12): 4101-4104.

[15] Hu C Q, Qiao L, Tian H W, et al. Role of carbon in the formation of hard Ge1-xCx thin films by reactive magnetron sputtering [J]. Physica B, 2011, 406(13): 2658-2662.

[16] Li Y P, Liu Z T, Zhao H L, et al. Infrared transmission properties of germanium carbon thin films deposited by reactive RF magnetron sputtering [J]. Vacuum, 2009, 83(6): 965-969.

[17] Wu X W, Zhang W J, Luo R Y, et al. Mechanical and environmental properties of Ge1-xCx thin film [J]. Vacuum, 2008, 82(5): 448-454.

[18] Liu H S, Jing Y G, Wang L S, et al. Correlation between properties of HfO2 films and preparing parameters by ion beam sputtering deposition [J]. Appl. Opt, 2014, 53(4): A405-A411.

[19] Jiang Y G, Liu H S, Wang L S, et al. Optical and interfacial layer properties of SiO2 films deposited on different substrates [J]. Appl. Opt, 2014, 53(4): A83-A87.

[20] Weber W H, Yang B K, Krishnamurthy M. The Ge-C local mode in epitaxial GeC and Ge-rich GeSiC alloys [J]. Appl. Phys. Lett, 1998, 73(5): 626-628.

[21] Jiang C Z, Zhu J Q, Han J C, et al. Chemical bonding and optical properties of germanium-carbon alloy films prepared by magnetron co-sputtering as a function of substrate temperature [J]. J. Non-Cryst. Solids, 2011, 357(24): 3952-3956.

[22] Long N J, Trodahl H J. Structure of amorphous carbon in amorphous C/Ge multilayers [J]. J. Appl. Phys,1990, 67(4): 1753-1756.

[23] Hu C Q, Zheng W T, Tian H W, et al. Effects of the chemical bonding on the optical and mechanical properties for germanium carbide films used as antireflection and protection coating of ZnS windows [J]. J. Phys.: Condens. Matter, 2006, 18(17): 4231-4241.

[24] Hu C Q, Xu L, Tian H W, et al. Effects of radio frequency power on the chemical bonding, optical and mechanical properties for radio frequency reactive sputtered germanium carbide films [J]. J. Phys. D: Appl. Phys, 2006, 39(23): 5074-5079.

[25] Hu C Q, Zheng W T, Zheng B, et al. Chemical bonding of a-Ge1-xCx:H films grown by RF reactive sputtering [J]. Vacuum, 2004, 77(1): 63-68.

孙鹏, 胡明, 张锋, 季一勤, 刘华松, 刘丹丹, 冷健, 杨明, 李钰. 离子束溅射法制备碳化锗薄膜的红外光学特性和力学特性[J]. 红外与毫米波学报, 2016, 35(2): 133. SUN Peng, HU Ming, ZHANG Feng, JI Yi-Qin, LIU Hua-Song, LIU Dan-Dan, LENG Jian, YANG Ming, LI Yu. The infrared optical and mechanical properties of germanium carbide films prepared by ion beam sputtering[J]. Journal of Infrared and Millimeter Waves, 2016, 35(2): 133.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!