发光学报, 2012, 33 (7): 683, 网络出版: 2012-08-15   

双掺Eu3+和Tb3+的下转换β-NaYF4的合成与发光性能

Synthesis and Luminescence Properties of β-NaYF4 Doped with Eu3+ and Tb3+
作者单位
南京工业大学 材料科学与工程学院, 江苏 南京 210009
摘要
采用高温溶剂热法合成了下转换发光材料NaYF4∶Eu3+ 和NaYF4∶Eu3+,Tb3+ , 采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、激发(PLE)谱和光致发光(PL)谱对材料的物相结构、形貌特征和发光性质进行了表征和研究, 并分析了其发光原理。结果表明:所合成的NaYF4∶Eu3+ 和NaYF4∶Eu3+,Tb3+ 为纯六方相晶体, 尺寸在100 nm左右; 改变Eu3+ 和Tb3+ 的掺杂浓度后晶格结构没有发生明显变化, 说明Eu3+ 和Tb3+ 取代的是Y3+的晶格位置; 在394 nm光的激发下, 检测到Eu3+ 在5D0→7F1 和5D0→7F2跃迁处的特征发射光, 并且可见光强度随着Eu3+ 离子掺杂浓度的变化而变化。另外Tb3+ 离子浓度对NaYF4∶Eu3+ 晶体结构产生了一定的影响, 说明掺杂Tb3+ 离子改变了Eu3+ 离子所处的配位环境, 导致红色发光带增强, 而这主要源于电偶极子跃迁的贡献。
Abstract
Powdered samples NaYF4∶Eu3+ and NaYF4∶Eu3+, Tb3+ are successfully prepared by high temperature solvothermal method. The obtained samples are characterized by X-ray power diffraction(XRD), field emission scanning electron microscopy (FESEM), and photoluminescence(PL) spectra. Experiment results revealed that as-prepared NaYF4∶Eu3+ and NaYF4∶Eu3+, Tb3+ crystallized in hexagonal phase without cubic phase, and the size was about 80 nm×100 nm (side length×thickness). When the doping concentration of Eu3+ and Tb3+are various, the lattice structure of samples do not change, indicating that the Eu3+ and Tb3+ ions are completely dissolved in the NaYF4 host lattice by substitution for the Y3+. The emission from 5D0→7F1 (595 nm) and 5D0→7F2 (618 nm) of Eu3+ ions was observed under excitation of 394 nm light from Xe lamp. The visible light intensity changes with the doping ions of Eu3+ concentration and the influence to crystal structure of Tb3+ ions concentration have been investigated. These results show that the doping ions of Tb3+ change the coordination environment of Eu3+, resulting to stronger red emissions, and electric dipole transition occupied the main contribution.
参考文献

[1] Truke T, Green M A, Wurfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92(3):1668-1674.

[2] Truke T, Green M A, Wurfel P. Improving solar cell efficiencies by up-conversion of sub-band-gap light [J]. J. Appl. Phys., 2002, 92(7):4117-4122.

[3] Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J. Am. Chem. Soc., 2006, 128(23):7444-7445.

[4] Mai H X, Zhang Y W, Yan C H, et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4∶Yb,Er core and core/shell-structured nanocrystals [J]. J. Phys. Chem. C, 2007, 111(37):13721-13729.

[5] Lin C K, Berry M T, May P S, et al. Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment [J]. Chem. Mater., 2009, 21(14):3406-3413.

[6] Qian H S, Zhang Y. Synthesis of hexagonal-phase core shell NaYF4 nanocrystals with tunable upconversion fluorescence [J]. Langmuir, 2008, 24(21):12123-12125.

[7] Wang Y S, Chen D Q, Liu F, et al. Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er∶NaYF4 nanocrystals [J]. J. Phys. Chem. B, 2006, 110(42):20843-20846.

[8] Ghosh P, Patra A. Tuning of crystal phase and luminescence properties of Eu3+ doped sodium yttrium fluoride nanocrystals [J]. J. Phys. Chem. C, 2008, 112(9):3223-3231.

[9] Ma D K, Huang S M, Dong Y Q, et al. Rare-earth-ion-doped hexagonal-phase NaYF4 nanowires: controlled synthesis and luminescent properties [J]. J. Phys. Chem. C, 2009, 113(19):8136-8142.

[10] Lin J, Li C X. Hydrothermal synthesis, formation mechanisms and luminescence properties of the rare earth fluorides nano and micro-materials [J]. Chin. J. Lumin.(发光学报), 2011, 32(6):519-534 (in Chinese).

[11] Chen X P, Huang X Y, Zhang Q Y. Concentration-dependent near-infrared quantum cutting in NaYF4∶Pr3+ phosphor [J]. J. Appl. Phys., 2009, 106(6):63518-63521.

[12] Mai H X, Zhang Y W, Yan C H, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties [J]. J. Am. Chem. Soc., 2006, 128(19):6426-6436.

[13] Li C X, Zhang C M, Lin J, et al. β-NaYF4 and β-NaYF4∶Eu3+ microstructures: Morphology control and tunable luminescence properties [J]. J. Phys. Chem. C, 2009, 113(6):2332-2339.

[14] Li C X, Quan Z W, Lin J, et al. Highly uniform and monodisperse β-NaYF4∶Ln3+ (Ln=Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties [J]. Inorg. Chem., 2007, 46(16):6329-6337.

[15] Zhang S Y. Spectroscopy of Rare Earth Ions, Spectral Properties and Spectral Theory [M]. Beijing: Science Press, 2008:134 (in Chinese).

[16] Olesiak-Banska J, Nyk M, Kaczmarek D, et al. Synthesis and optical properties of water-soluble fluoride nanophosphors co-doped with Eu3+ and Tb3+ [J]. Opt. Mater., 2011, 33(9):1419-1423.

蒋晨飞, 黄文娟, 丁明烨, 宋艳, 倪亚茹, 陆春华, 许仲梓. 双掺Eu3+和Tb3+的下转换β-NaYF4的合成与发光性能[J]. 发光学报, 2012, 33(7): 683. JIANG Chen-fei, HUANG Wen-juan, DING Ming-ye, SONG Yan, NI Ya-ru, LU Chun-hua, XU Zhong-zi. Synthesis and Luminescence Properties of β-NaYF4 Doped with Eu3+ and Tb3+[J]. Chinese Journal of Luminescence, 2012, 33(7): 683.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!