红外与激光工程, 2017, 46 (6): 0634002, 网络出版: 2017-07-10   

白光干涉仪传递函数的成因分析及其非线性研究

Determination and nonlinearity study of instrument transfer function of white light interferometer
作者单位
中国工程物理研究院机械制造工艺研究所, 四川 绵阳621000
摘要
为提高光学表面的功率谱密度检测精度, 研究了白光干涉仪仪器传递函数(ITF)的产生机理和标定方法。将白光干涉仪作为非相干成像系统, 对正弦表面干涉光强进行Bessel函数展开, 通过干涉光强的频谱强度变化研究白光干涉仪对正弦表面高度的作用机理, 利用数值仿真计算了白光干涉仪对正弦表面的衰减程度。采用30、80、120 nm高度的台阶标准板对商品白光干涉仪的传递函数进行标定, 并提出了一种可靠的ITF计算方法。理论分析、数值仿真和实验结果表明: ITF随表面高度的增加而增大, 此时白光干涉仪对表面高度的响应表现出明显的非线性; 表面高度小于λ/10得到的ITF曲线与白光干涉仪光学系统调制传递函数非常接近, 白光干涉仪对表面高度的响应接近线性。文中对于白光干涉仪频域传递特性研究和光学表面功率谱密度检测具有重要意义。
Abstract
Instrument transfer function(ITF) of white light interferometer(WLI) influences the measurement accuracy of power spectral density(PSD) for optical surfaces. To understand the nature of ITF, WLI was treated as an incoherent optical system and a sinusoidal surface was the input signal. Studying the Bessel function expansion of interference intensity spectrum of sinusoidal surface, the theoretical analysis indicated that the low pass of optical system led to the surface height attenuation. The nonlinearity of Bessel function resulted in the nonlinear response of WLI to height, and the response approached linear when the height was much less than wavelength. Numerical simulations and experiments validated the theoretical conclusions. Step-artefacts of 30 nm, 80 nm and 120 nm height were employed to calibrate the ITF of a commercial WLI. The experimental result and the simulation result match each other well. ITF rises when the surface height increases, which manifests obvious nonlinearity. If the surface height is less than λ/10, ITF nearly equals the modulation transfer function of WLI optical system, in which case WLI is approximately linear to surface height. This paper has promotion for understanding WLI transfer characteristic and enhancing PSD measurement accuracy.
参考文献

[1] Aikens D M. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[C]//SPIE, 1995, 2576: 281-290.

[2] Hull T, Riso M J, Barentine J M, et al. Mid-spatial frequency matters: examples of the control of the power spectral density and what that means to the performance of imaging systems [C]//SPIE, 2012, 8353: 835329.

[3] 王伟, 徐敏, 李洪敏, 等. 大口径导光板抛光及其功率谱密度分析[J]. 红外与激光工程, 2013, 42(4): 982-987.

    Wang Wei, Xu Min, Li Hongmin, et al. Polishing of large-aperture mirror and analysis of power spectral density [J]. Infrared and Laser Engineering, 2013, 42(4): 982-987. (in Chinese)

[4] 马占龙, 王君林. 超高精度光学元件加工技术[J]. 红外与激光工程, 2013, 42(6): 1485-1490.

    Ma Zhanlong, Wang Junlin. Ultra-precision optical fabrication technology[J]. Infrared and Laser Engineering, 2013, 42(6): 1485-1490. (in Chinese)

[5] 张磊, 程鑫彬, 张锦龙, 等. 光学表面功率谱密度的表征[J]. 红外与激光工程, 2015, 44(12): 3707-3712.

    Zhang Lei, Cheng Xinbin, Zhang Jinlong, et al. Characterization of power spectral density of optical surface [J]. Infrared and Laser Engineering, 2015, 44(12): 3707-3712. (in Chinese)

[6] 杨相会, 沈卫星, 张雪洁, 等. 不同干涉仪检测光学元件功率谱密度的比较[J]. 中国激光, 2016, 43(9): 0904002.

    Yang Xianghui, Shen Weixin, Zhang Xuejie, et al. Comparison among different interferometers for measuring power spectral density of optical elements[J]. Chinese J Lasers, 2016, 43(9): 0904002. (in Chinese)

[7] Xu Jiancheng, Wang Feizhou, Deng Yan, et al. Numerical analysis of system transfer function in interferometric imaging system[J]. High Power Lasers and Particle Beams, 2012, 24(8): 1811-1815.

[8] 孙鸽, 马冬梅, 张海涛. 干涉仪仪器传递函数的检测方法[J]. 中国光学, 2014, 7(1): 137-143.

    Sun Ge, Ma Dongmei, Zhang Haitao. Interferometer instrument transfer function testing method[J]. Chinese Optics, 2014, 7(1): 137-143. (in Chinese)

[9] Henning A J, Huntley J M, Giusca C L. Obtaining the Transfer Function of optical instruments using large calibrated reference objects [J]. Optics Express, 2015, 23(13): 16617-16627.

[10] De Groot P. Principles of interference microscopy for the measurement of surface topography [J]. Advances in Optics and Photonics, 2015, 7:1-65.

[11] Leach R K. Is one step height enough[C]// Proc of the 30th ASPE Annual Meeting, 2015.

[12] 刘俭, 谷康, 李梦周, 等. 光学显微三维测量解耦合准则[J]. 红外与激光工程, 2017, 46(3): 0302001.

    Liu Jian, Gu Kang, Li Mengzhou, et al. 3D measurement decoupling criterion in optical microscopy [J]. Infrared and Laser Engineering, 2017, 46(3): 0302001. (in Chinese)

刘乾, 袁道成, 何华彬, 吉方. 白光干涉仪传递函数的成因分析及其非线性研究[J]. 红外与激光工程, 2017, 46(6): 0634002. Liu Qian, Yuan Daocheng, He Huabin, Ji Fang. Determination and nonlinearity study of instrument transfer function of white light interferometer[J]. Infrared and Laser Engineering, 2017, 46(6): 0634002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!