光学学报, 2015, 35 (10): 1012001, 网络出版: 2015-10-08   

基于多尺度小波变换和灰色神经网络的稻种发芽率红外热预测模型的研究

Study on Infrared Thermal Prediction Model of Rice Seed Germination Rate Based on Multi-Scale Wavelet Transform and Grey Neural Network
作者单位
1 南京农业大学工学院江苏省现代设施农业技术与装备工程实验室, 江苏 南京 210031
2 远程测控技术江苏省重点实验室, 江苏 南京 210096
3 南京农业大学农学院作物遗传与种质创新国家重点实验室, 江苏 南京 210095
摘要
基于老化不同时间的稻种的生理学和物理学特性,提出一种基于多尺度小波变换和灰色神经网络的稻种发芽率红外热预测模型,实现稻种发芽率的快速、无损检测,解决传统发芽实验法实验周期长、操作复杂等问题。从不同发芽率稻种的胚芽部位提取144组数据,通过多尺度小波变换,分析逼近信号和细节信号,得出第3层细节信号(d3) 贡献最大。以第3层细节信号作为模型的输入,随机分为校正集和预测集,校正集96组,预测集48组。分析和比较老化不同时间的稻种的红外热差异,通过偏最小二乘算法(PLS)、BP神经网络、径向基神经网络(RBFNN)和灰色神经网络(GNN),建立稻种发芽率红外热预测模型。结果表明,GNN建立的稻种发芽率模型预测效果最优,其中校正集相关系数(RC)和标准偏差(SEC)分别为0.9619、2.5013,预测集相关系数(RP)和标准偏差(SEP)分别为0.9554、2.4172,相关性达到较高水平且误差较小。研究表明采用小波分解和灰色神经网络建立稻种发芽率红外热预测模型的方法是可行的。
Abstract
On the basis of physiological and physical properties of rice seeds with different aging time, an infrared thermal model for testing rice seed germination rate by multi-scale wavelet transform and grey neural network is proposed to realize fast and non-destructive detection of rice seed germination rate, and to solve the problems of long experimental period, complex operation resulted from traditional germination rate test methods. 144 samples are extracted from germ section of different rice seeds. Detail signal of the third layer wavelet decomposition (d3) is the greatest contribution by analyzing approximation signal and detail signal through a multi-scale wavelet transform. So the detail signal of the third layer wavelet decomposition is used as the model input, and the samples are randomly divided into a calibration set (96 samples) and a prediction set (48 samples). The infrared thermal difference of rice seeds with different aging time is analyzed and compared through partial least squares (PLS), back propagation (BP) neural network, radial basis function neural network (RBFNN) and grey neural network (GNN) to establish infrared thermal prediction models of rice seed germination rate. The results show that the optimal model of germination rate is constructed by GNN artificial neural network, by which the correlation coefficient (RC) and standard deviation (SEC) of the calibration set are 0.9619 and 2.5013 respectively, and the correlation coefficient (RP) and standard deviation (SEP) of the prediction set are 0.9554 and 2.4172 respectively, the relevance reaches a higher level and the error is small. The experimental results show that adopting wavelet decomposition and GNN to establish the infrared thermal prediction model of rice seed germination rate is feasible.
参考文献

[1] 陈年伟, 张体刚. 影响杂交水稻种子发芽率的因素探讨[J]. 杂交水稻, 2009, 24(3): 23-26.

    Chen Nianwei, Zhang Tigang. Influencing factors in germination percentage of hybrid rice seeds[J]. Hybrid Rice, 2009, 24(3): 23-26.

[2] 黎兆安, 韦善富, 周祖富, 等. 微波辐射对水稻种子发芽势及生理生化特性的影响[J]. 中国种业, 2010, (1): 46-47.

[3] 赵忠良, 张连萍, 张蓓, 等. 超声波处理稻种对其生根发芽的影响[J]. 农机化研究, 2011, (6): 122-124.

    Zhao Zhongliang, Zhang Lianping, Zhang Bei, et al.. Influence of ultrasonic stimulation on the germination and take root of rice seed[J]. Journal of Agricultural Mechanization Research, 2011, (6): 122-124.

[4] 李毅念, 姜丹, 刘璎瑛, 等. 基于近红外光谱的杂交水稻种子发芽率测试研究[J]. 光谱学与光谱分析, 2014, 34(6): 1528-1532.

    Li Yinian, Jiang Dan, Liu Yingying, et al.. Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy [J]. Spectroscopy and Spectral Analysis, 2014, 34(6): 1528-1532.

[5] 周建民, 周其显, 刘燕德. 红外热成像技术在农业生产中的应用[J]. 农机化研究, 2010, (2): 1-4.

    Zhou Jianmin, Zhou Qixian, Liu Yande. Application of infrared thermography techniques in agricultural production[J]. Journal of Agricultural Mechanization Research, 2010, (2): 1-4.

[6] 于征, 方芳, 彭祚登, 等. 基于新兴技术的种子活力检测方法研究[J]. 种子, 2012, 31(8): 52-55.

    Yu Zheng, Fang Fang, Peng Zuodeng, et al.. New technologies for detecting seed vigor[J]. Seed, 2012, 31(8): 52-55.

[7] 陈斌, 田桂华. 红外热成像技术在植物病害检测中的应用研究进展[J]. 江苏农业科学, 2014, 42(9): 1-4.

    Chen Bin, Tian Guihua. Application of infrared thermal imaging in the detection of plant disease progression[J]. Jiangsu Agricultural Sciences, 2014, 42(9): 1-4.

[8] 李小龙, 王库, 马占鸿, 等. 基于热红外成像技术的小麦病害早期检测[J]. 农业工程学报, 2014, 30(18): 183-189.

    Li Xiaolong, Wang Ku, Ma Zhanhong, et al.. Early detection of wheat disease based on thermal infrared imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 183-189.

[9] Jamil N, Bejo S K. Husk detection using thermal imaging technology[J]. Agriculture & Agricultural Science Procedia, 2014, 2: 128–135.

[10] Kranner I, Kastberger G, Hartbauer M, et al.. Noninvasive diagnosis of seed viability using infrared thermography[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3912-3917.

[11] 龚芳, 张学武, 孙浩. 基于独立分量分析和粒子群算法的太阳能电池表面缺陷红外热成像检测[J]. 光学学报, 2012, 32(4): 0415002.

    Gong Fang, Zhang Xuewu, Sun Hao. Detection system for solar module surface defects based on constrained ICA model and PSO method [J]. Acta Optica Sinica, 2012, 32(4): 0415002.

[12] 支巨振, 毕辛华, 杜克敏, 等. 农作物种子检验规程-发芽试验[S]. 北京: 中国标准出版社, 1995.

    Zhi Juzhen, Bi Xinhua, Du Kemin, et al.. Rules for agricultural seed testing - germination test[S]. Beijing: Chinese Standard Press, 1995.

[13] 朱靳, 孙冬梅, 陈玲. 基于差分吸收光谱技术的NH3浓度反演算法研究[J]. 光学学报, 2013, 33(2): 0230004.

    Zhu Jin, Sun Dongmei, Chen Ling. Study of concentration retrieving algorithm for ammonia based on differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2013, 33(2): 0230004.

[14] 许惠滨, 魏毅东, 连玲, 等. 水稻种子人工老化与自然老化的分析比较[J]. 分子植物育种, 2013,11(5): 552-556.

    Xu Huibin, Wei Yidong, Lian Ling, et al.. Comparative analysis of artificial aging and natural aging with rice seeds[J]. Molecular Plant Breeding, 2013,11(5): 552-556.

[15] 杨亚平, 姜孝成, 陈良碧, 等. 水稻种子老化的生理机制[J]. 湖南农业大学学报: 自然科学版, 2008, 34(3): 265-269.

    Yang Yaping, Jiang Xiaocheng, Chen Liangbi, et al.. Study on physiological mechanism in aging of rice seeds[J]. Journal of Hunan Agricultural University (Natural Sciences), 2008, 34(3): 265-269.

[16] 季俊杰, 罗永浩. 用压力波动的小波高频分量检测燃烧不稳定性[J]. 上海交通大学学报, 2007, 41(3): 342-346.

    Ji Junjie, Luo Yonghao. The combustion instability detection using the wavelet detail of pressure fluctuations[J]. Journal of Shanghai Jiao Tong University, 2007, 41(3): 342-346.

[17] 段亚丽, 苏荣国, 石晓勇, 等. 基于小波高频分量的浮游植物活体荧光识别技术研究[J]. 中国激光, 2012, 39(7): 0715003.

    Duan Yali, Su Rongguo, Shi Xiaoyong, et al.. Differentiation of phytoplankton populations by in vivo fluorescence based on high-frequency component of wavelet[J]. Chinese J Lasers, 2012, 39(7): 0715003.

[18] 伍龙, 邢丽坤, 陈帅. 基于奇异谱分析的最优分解层数确定算法[J]. 计算机工程与应用, 2012, 48(36): 137-141.

    Wu Long, Xing Likun, Chen Shuai. Determination algorithm of optimal decomposition level based on singular spectrum analysis[J]. Computer Engineering and Applications, 2012, 48(36): 137-141.

[19] 路士增, 姜刚顺, 隋青美, 等. 基于小波变换和支持向量多分类机的光纤布拉格光栅低速冲击定位系统[J]. 中国激光, 2014, 41(3): 0305006.

    Lu Shizeng, Jiang Gangshun, Sui Qingmei, et al.. Identification of impact location by using fiber Bragg grating based on wavelet transform and support vector classifiers[J]. Chinese J Lasers, 2014, 41(3): 0305006.

[20] 张雷杰, 张敏, 杨乐, 等. 食品比热容的BP神经网络预测[J]. 安徽农业科学, 2009, 37(17): 8296-8297.

    Zhang Leijie, Zhang Min, Yang Le, et al.. Using BP neural networks to predict specific heat capacity of food[J]. Journal of Anhui Agricultural Sciences, 2009, 37(17): 8296-8297.

[21] 金文, 张来林, 李光涛, 等. 稻谷导热系数的测定研究[J]. 粮油食品科技, 2010, 18(2): 1-3.

    Jin Wen, Zhang Lailin, Li Guangtao, et al.. Study on the thermal conductivity of paddy[J]. Foodstuffs Technology, 2010, 18(2): 1-3.

[22] Plans M, Simó J, Casaas F, et al.. Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy [J]. Food Research International, 2014, 56: 55-62.

[23] 陈秀丽, 王桂文, 陶站华, 等. 基于PCA 和BP 网络的地中海贫血红细胞拉曼光谱判别[J]. 中国激光, 2009, 36(9): 2448-2454.

    Chen Xiuli, Wang Guiwen, Tao Zhanhua, et al.. Raman spectral discrimination of thalassemia erythrocytes based on PCA arithmetic and BP network model[J]. Chinese J Lasers, 2009, 36(9): 2448-2454.

[24] Moody J, Darken C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294.

[25] 陈淑燕, 王炜. 交通量的灰色神经网络预测方法[J]. 东南大学学报: 自然科学版, 2004, 34(4): 541-544.

    Chen Shuyan, Wang Wei. Grey neural network forecasting for traffic flow[J]. Journal of Southeast University (Natural Science Edition), 2004, 34(4): 541-544.

[26] 杨简, 潘贺, 李太浩, 等. 基于灰色神经网络的蛋品新鲜度无损检测的研究[J]. 中国农机化学报, 2014, 35(1): 229-234.

    Yang Jian, Pan He, Li Taihao, et al.. Study on non-destructive detection method for fresh degree of eggs based on grey neural network [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 229-234.

[27] 张红亮, 李劼, 张文根, 等. GM (1,1) 模型在铝电解氧化铝浓度估计中的应用研究[J]. 仪器仪表学报, 2008, 29(4): 883-887.

    Zhang Hongliang, Li Jie, Zhang Wengen, et al.. Application of grey GM(1,1) model to alumina concentration estimation in aluminum electrolysis[J]. Chinese Journal of Scientific Instrument, 2008, 29(4): 883-887.

方文辉, 卢伟, 洪德林, 党晓景, 梁琨. 基于多尺度小波变换和灰色神经网络的稻种发芽率红外热预测模型的研究[J]. 光学学报, 2015, 35(10): 1012001. Fang Wenhui, Lu Wei, Hong Delin, Dang Xiaojing, Liang Kun. Study on Infrared Thermal Prediction Model of Rice Seed Germination Rate Based on Multi-Scale Wavelet Transform and Grey Neural Network[J]. Acta Optica Sinica, 2015, 35(10): 1012001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!