激光生物学报, 2012, 21 (6): 532, 网络出版: 2015-10-08  

油菜种子的油脂和蛋白积累及相关基因表达的研究

A Study of Seed Oil and Protein Accumulation and Related Gene Expression Profiles in Brassica Napus L.
作者单位
1 湖南大学生物学院, 化学生物传感与计量学国家重点实验室, 湖南 长沙 410082
2 湖南亚华种业科学研究院, 湖南 长沙 410001
摘要
检测了油菜籽成熟过程的总蛋白和粗脂肪含量变化, 以及与之相关23个基因在各器官及果荚各发育时期的表达情况。结果显示: 蛋白在开花后25天(25 DAF)后大量累积, 而油脂则在25 DAF后增速放缓, 30 DAF后才急剧上升。多数油脂合成相关酶基因在果荚中表达最高, 叶片中次之, 花蕾和花朵中有少量表达, 茎中的表达很低, 少数在根中表达, 部分基因的表达随油菜果荚发育而持续增加, 另一部分则呈先升高, 再下降至25 DAF低点, 再回升的趋势; 转录因子LEC1、LEC2及WRI与贮藏蛋白基因Napin、Cruciferin主要在果荚中表达, 前者的表达主要在果荚发育前期大量, 其中WRI的出现起伏波动, 后者主要在25、30 DAF大量表达。这表明种子成熟时总蛋白和粗脂肪含量变化可能与相关基因表达变化相关。
Abstract
The content of total protein and crude fat in seed was detected during different stages of seed filling in oilrape, and the expression profiles of 23 related genes were determined in different organs and different development stages siliques. The result shows that protein content increased sharply after 25 days after flowering (DAF), while the increase of oil content slowed down at 25 DAF but accelerated greatly after 30 DAF. The transcript level of most oil-synthesis enzyme genes were expressed highest in siliques, then lower in leaves, and less in buds and flowers, and lowest in stems, few of these genes were expressed in roots. The transcript profiles of these genes would be divided into two patterns during seed filling: one increased standing; the other one increased at the beginning, then slowed down until 25 DAF, and then increased again until the end. Transcript factors (LEC1, LEC2 and WRI) and storage protein genes (Napin, Cruciferin) were mainly expressed in siliques, and the former were mainly expressed during earlier stage of siliques maturing and WRI expressed in waved curve over the time, the latter were strongly expressed at 25, 30 DAF. This suggests that the changes of seed total protein and crude fat content during seed filling would correlate with the expression changes of involved genes.
参考文献

[1] 中华人民共和国国家统计局. 中国统计年鉴2011[M]. 北京: 中国统计出版社, 2011.

    National Bureau of Statistics of China. China Statistical Yearbook 2011[M]. Beijing: China Statistical Press, 2011.

[2] LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-lipid metabolism in the Arabidopsis book[M]. Rockville: American Society of Plant Biologists, 2010.

[3] ICHIHARA K, TAKAHASHI T, FUJII S. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis[J]. Biochim Biophys Acta, 1988, 958(1): 125-129.

[4] HOGLUND A S, RODIN J, LARSSON E, et al. Distribution of napin and cruciferin in developing rape seed embryos[J]. Plant Physiol, 1992, 98(2): 509-515.

[5] STONE S L, KWONG L W, YEE K M, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development[J]. Proc Natl Acad Sci U S A, 2001, 98(20): 11806-11811.

[6] WEST M, YEE K M, DANAO J, et al. LEAFY COTYLEDON1 Is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis[J]. Plant Cell, 1994, 6(12): 1731-1745.

[7] BAUD S, MENDOZA M S, TO A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant J, 2007, 50(5): 825-838.

[8] BAUD S, WUILLEME S, TO A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis[J]. Plant J, 2009, 60(6): 933-947.

[9] 宁正祥. 食品成分分析手册[M]. 北京: 中国轻工业出版社, 1997.

    NIN Zhengxiang. Handbook of food composition analysis[M]. Beijing: China Light Industry Press, 1997.

[10] 高桂珍, 伍晓明, 陆光远, 等. 油菜种子成熟期油脂和蛋白质积累的基因型差异研究[Z]. 福州: 2008.

    GAO Guizhen, WU Xiaoming, LU Guangyuan, et al. Genotypic variation in lipid and protein accumulation during seed maturation[Z]. Fuzhou: 2008.

[11] 陈玉萍, 刘后利. 甘蓝型油菜子油分的积累与某些生理变化关系的研究[J]. 武汉植物学研究, 1995(3): 240-246.

    CHEN Yuping, LIU Houli. Study of the relationship between lipids accumulation and some physiological changes during oilrape seed maturing[J]. Journal of Wuhan Botanical Research, 1995(3): 240-246.

[12] BAUD S, LEPINIEC L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis[J]. Plant Physiol Biochem, 2009, 47(6): 448-455.

[13] RUUSKA S A, GIRKE T, BENNING C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. Plant Cell, 2002, 14(6): 1191-1206.

[14] 陈锦清, 郎春秀, 胡张华, 等. 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J]. 农业生物技术学报, 1999, 7(4): 316-320.

    CHEN Jinqing, LANG Chunxiu, HU Zhanghua, et al. Antisense PEP gene regulates to ratio of protein and lipid content in Brassica Napus seeds[J]. Journal of Agricultural Biotechnology, 1999, 7(4): 316-320.

[15] CROUCH M, SUSSEX I. Development and storage protein synthesis in Brassica Napus L. embryos in vivo and in vitro[J]. Planta, 1981(153): 64-74.

[16] LOTAN T, OHTO M, YEE K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell, 1998, 93(7): 1195-1205.

[17] BROWNSEY R W, ZHANDE R, BOONE A N. Isoforms of acetyl-CoA carboxylase: structures, regulatory properties and metabolic functions[J]. Biochem Soc Trans, 1997, 25(4): 1232-1238.

[18] KE J, WEN T N, NIKOLAU B J, et al. Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase[J]. Plant Physiol, 2000, 122(4): 1057-1071.

[19] WU G Z, XUE H W. Arabidopsis beta-ketoacyl-[acyl carrier protein]synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development[J]. Plant Cell, 2010, 22(11): 3726-3744.

[20] LAI C Y, CRONAN J E. Beta-ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis[J]. J Biol Chem, 2003, 278(51): 51494-51503.

[21] PUYAUBERT J, DIERYCK W, COSTAGLIOLI P, et al. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica Napus cultivars during seed development[J]. Biochim Biophys Acta, 2005, 1687(1-3): 152-163.

[22] KANRAR S, VENKATESWARI J, DUREJA P, et al. Modification of erucic acid content in indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FATTY ACID ELONGATION1 (BjFAE1) gene[J]. Plant Cell Rep, 2006, 25(2): 148-155.

[23] KNUTZON D S, THOMPSON G A, RADKE S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. Proc Natl Acad Sci U S A, 1992, 89(7): 2624-2628.

[24] JUNG J H, KIM H, GO Y S, et al. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica Napus containing high oleic acid contents[J]. Plant Cell Rep, 2011, 30(10): 1881-1892.

[25] VRINTEN P, HU Z, MUNCHINSKY M A, et al. Two FAD3 desaturase genes control the level of linolenic acid in flax seed[J]. Plant Physiol, 2005, 139(1): 79-87.

[26] CASES S, SMITH S J, ZHENG Y W, et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis[J]. Proc Natl Acad Sci U S A, 1998, 95(22): 13018-13023.

[27] LU C L, DE NOYER S B, HOBBS D H, et al. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana[J]. Plant Mol Biol, 2003, 52(1): 31-41.

[28] HU Y, WU G, CAO Y, et al. Breeding response of transcript profiling in developing seeds of Brassica Napus[J]. BMC Mol Biol, 2009, 10: 49.

黄星群, 赵小英, 贺热情, 彭武生, 卓宇红, 刘选明. 油菜种子的油脂和蛋白积累及相关基因表达的研究[J]. 激光生物学报, 2012, 21(6): 532. HUANG Xingqun, ZHAO Xiaoying, HE Reqing, PENG Wusheng, ZHUO Yuhong, LIU Xuanming. A Study of Seed Oil and Protein Accumulation and Related Gene Expression Profiles in Brassica Napus L.[J]. Acta Laser Biology Sinica, 2012, 21(6): 532.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!