半导体光电, 2019, 40 (4): 528, 网络出版: 2019-09-20   

原子层沉积法制备高反射率的分布式布拉格反射镜

Preparation of High Reflectivity Distributed Bragg Mirrors Based on Atomic Layer Deposition
作者单位
1 武汉大学 物理科学与技术学院 1. 人工微纳结构教育部重点实验室
2 武汉大学 物理科学与技术学院 2. 核固体物理湖北省重点实验室, 武汉 430072
引用该论文

万颖, 吴昊, 刘昌. 原子层沉积法制备高反射率的分布式布拉格反射镜[J]. 半导体光电, 2019, 40(4): 528.

WAN Ying, WU Hao, LIU Chang. Preparation of High Reflectivity Distributed Bragg Mirrors Based on Atomic Layer Deposition[J]. Semiconductor Optoelectronics, 2019, 40(4): 528.

参考文献

[1] Shibata N. Fabrication of LED based on Ⅲ-Ⅴ nitride and its applications[J]. Mrs Online Proc. Library Archive, 2004, 831(200): 58-61.

[2] Cho J, Kim H, Kim H, et al. Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate[J]. Phys. Status Solidi C, 2010, 2(7): 2874-2877.

[3] Lu T C, Kao T T, Kao C C, et al. GaN-based high-Q vertical-cavity light-emitting diodes[J]. IEEE Electron Device Lett., 2007, 28(10): 884-886.

[4] Shibata N. Fabrication of LED based on Ⅲ-Ⅴ nitride and its applications[J]. Mrs Online Proc. Library Archive, 2004, 831(200): 58-61.

[5] Cho J, Kim H, Kim H, et al. Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate[J]. Phys. Status Solidi C, 2010(7): 2874-2877.

[6] Wen Feng, Huang Lirong, Jiang Bo, et al. In situ growth monitoring of AlGaN/GaN distributed Bragg reflectors at 530nm using a 633nm laser[J]. Chinese J. of Semiconductors, 2010, 31(9): 53-58.

[7] Impact of thickness of GaN buffer layer on properties of AlN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition[J]. Science China (Technological Sciences), 2010, 53(2): 313-316.

[8] ZhaoYu, Fan Bingfeng, Chen Yiting, et al. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer[J]. Chinese Physics B, 2016, 25(7): 557-560.

[9] Ma Li, Shen Guangdi, Gao Zhiyuan, et al. Enhanced performances of AlGaInP-based light-emitting diodes with Schottky current blocking layers[J]. Chinese Phy. B, 2015, 24(9): 468-471.

[10] Zhuo Xiangjing, Zhang Jun, Li Danwei, et al. Enhanced performances of InGaN/GaN-based blue light-emitting diode with InGaN/AlInGaN superlattice electron blocking layer[J]. Chinese Phys. B, 2014, 23(6): 612-616.

[11] Lee Y J, Lee C J, Chen C H. Effect of surface texture and backside patterned reflector on the AlGaInP light-emitting diode: High extraction of waveguided light[J]. IEEE J. of Quantum Electron., 2011, 47(5): 636-641.

[12] Lerer A M, Tsvetyanskii E A. A theoretical study of resonance-absorbing diffraction gratings[J]. Technical Phys. Lett., 2012, 38(11): 995-999.

[13] 陈洪钧, 郭 浩, 张 雄, 等. 采用ALD方法制备TiO2/Al2O3布拉格反射镜并配合金属反射镜来增强背镀结构的反射效率[J]. 电子器件, 2013, 36(4): 431-436.

    Chen Hongjun, Guo Hao, Zhang Xiong, et al. High reflectance of backside reflector with a hybrid metallic mirror and ALD-TiO2/Al2O3 DBR[J]. Chinese J. of Electron Devices, 2013, 36(4): 431-436.

[14] Huang H W, Lin C H, Yu C C, et al. Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography[J]. Nanotechnol., 2008, 19(18): 185301.

[15] Chang S J. Nitride-based LEDs with a hybrid Al mirror+TiO2/SiO2 DBR backside reflector[J]. J. of Lightwave Technol., 2009, 26(17): 3131-3136.

[16] Kao C C, Yao H H. An optically pumped blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta205/SiO2 distributed Bragg reflectors[C]// IEEE Conf. on Lasers & Electro-Optics, 2006.

[17] Jeong T, Haeng Lee H, Park S H, et al. InGaN/AlGaN ultraviolet light-emitting diode with a Ti3O5/Al2O3 distributed Bragg reflector[J]. Jpn. J. Appl. Phys., 2014, 47(12): 8811-8814.

[18] Kim J K, Gessmann T, Luo H, et al. GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector[J]. Appl. Phys. Lett., 2004, 84(22): 4508-4510.

[19] Ban K Y, Hong H G, Noh D Y, et al. Ir/Ag reflector for high-performance GaN-based near UV light emitting diodes[J]. Materials Science & Engineering B, 2006, 133(1): 26-29.

[20] Markku Leskela, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

[21] Groner M D, Fabreguette F H, Elam J W, et al. Low-temperature Al2O3 atomic layer deposition[J]. Chemistry of Materials, 2004, 16(4): 639-645.

[22] Hu Z, Turner C H. Atomic layer deposition of TiO2 from TiI4 and H2O onto SiO2 surfaces: ab initio calculations of the initial reaction mechanisms[J]. J. of the American Chemical Society, 2007, 129(13): 3863-78.

[23] Xie Q, Jiang Y L, Detavernier C, et al. Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O[J]. J. of Appl. Phys., 2007, 102(8): 9198.

[24] Min J S, Son Y W, Kang W G, et al. Atomic layer deposition of TiN films by alternate supply of tetrakis(ethylmethylamino)titanium and ammonia[J]. Jap. J. of Appl. Phys., 1999, 37(9A): 4999-5004.

万颖, 吴昊, 刘昌. 原子层沉积法制备高反射率的分布式布拉格反射镜[J]. 半导体光电, 2019, 40(4): 528. WAN Ying, WU Hao, LIU Chang. Preparation of High Reflectivity Distributed Bragg Mirrors Based on Atomic Layer Deposition[J]. Semiconductor Optoelectronics, 2019, 40(4): 528.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!