半导体光电, 2019, 40 (4): 528, 网络出版: 2019-09-20   

原子层沉积法制备高反射率的分布式布拉格反射镜

Preparation of High Reflectivity Distributed Bragg Mirrors Based on Atomic Layer Deposition
作者单位
1 武汉大学 物理科学与技术学院 1. 人工微纳结构教育部重点实验室
2 武汉大学 物理科学与技术学院 2. 核固体物理湖北省重点实验室, 武汉 430072
摘要
为提高GaN基发光二极管(LED)的发光强度, 制备TiO2/Al2O3分布式布拉格反射器(DBR)来提高其外量子效率是一种有效的方法。原子层沉积(ALD)法所制备的薄膜具有良好的均匀性, 适合用来制备反射器材料。同时, TiN薄膜具有良好的类金属性质, 且与TiO2之间具有良好的粘附性, 因此在DBR基础上再采用TiN反射层可以将反射率进一步提高。Matlab软件模拟结果表明, 3~6周期厚的DBR, 其反射率随厚度增加而提高。其中6周期DBR的反射率为95%, 加上TiN薄膜后反射率可以得到进一步提高。实验结果与模拟结果吻合, 6周期DBR+TiN结构的反射率达到99%。给带有该结构的LED注入50mA电流时, LED光输出功率(LOP)相对没有该结构的器件提升了约68.3%。
Abstract
In order to improve the luminescence intensity of GaN-based light-emitting diodes (LEDs), it is an effective method to improve its external quantum efficiency by preparing TiO2/Al2O3 distributed Bragg reflectors (DBR). Due to the good uniformity of the film prepared by ALD, it is suitable for the preparation of reflector materials. TiN film has good metalloid properties and good adhesion to TiO2, therefore, the reflectivity can be further improved by using a TiN reflective layer on the basis of DBR. Simulations with Matlab software show that the reflectivity of DBR with 3~6 cycles increases with the increasing thickness of the film, in particular, that of DBR with 6 cycles is 95%, and it can be further improved with the introduction of TiN film. The experimental and simulation data show good agreement. The reflectivity of the structure of 6 DBR+TiN achieves 99% and when a current of 50mA was injected into the LED with this structure, its light output power (LOP) will be increased by about 68.3% compared to that of the device without such a modified structure.
参考文献

[1] Shibata N. Fabrication of LED based on Ⅲ-Ⅴ nitride and its applications[J]. Mrs Online Proc. Library Archive, 2004, 831(200): 58-61.

[2] Cho J, Kim H, Kim H, et al. Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate[J]. Phys. Status Solidi C, 2010, 2(7): 2874-2877.

[3] Lu T C, Kao T T, Kao C C, et al. GaN-based high-Q vertical-cavity light-emitting diodes[J]. IEEE Electron Device Lett., 2007, 28(10): 884-886.

[4] Shibata N. Fabrication of LED based on Ⅲ-Ⅴ nitride and its applications[J]. Mrs Online Proc. Library Archive, 2004, 831(200): 58-61.

[5] Cho J, Kim H, Kim H, et al. Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate[J]. Phys. Status Solidi C, 2010(7): 2874-2877.

[6] Wen Feng, Huang Lirong, Jiang Bo, et al. In situ growth monitoring of AlGaN/GaN distributed Bragg reflectors at 530nm using a 633nm laser[J]. Chinese J. of Semiconductors, 2010, 31(9): 53-58.

[7] Impact of thickness of GaN buffer layer on properties of AlN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition[J]. Science China (Technological Sciences), 2010, 53(2): 313-316.

[8] ZhaoYu, Fan Bingfeng, Chen Yiting, et al. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer[J]. Chinese Physics B, 2016, 25(7): 557-560.

[9] Ma Li, Shen Guangdi, Gao Zhiyuan, et al. Enhanced performances of AlGaInP-based light-emitting diodes with Schottky current blocking layers[J]. Chinese Phy. B, 2015, 24(9): 468-471.

[10] Zhuo Xiangjing, Zhang Jun, Li Danwei, et al. Enhanced performances of InGaN/GaN-based blue light-emitting diode with InGaN/AlInGaN superlattice electron blocking layer[J]. Chinese Phys. B, 2014, 23(6): 612-616.

[11] Lee Y J, Lee C J, Chen C H. Effect of surface texture and backside patterned reflector on the AlGaInP light-emitting diode: High extraction of waveguided light[J]. IEEE J. of Quantum Electron., 2011, 47(5): 636-641.

[12] Lerer A M, Tsvetyanskii E A. A theoretical study of resonance-absorbing diffraction gratings[J]. Technical Phys. Lett., 2012, 38(11): 995-999.

[13] 陈洪钧, 郭 浩, 张 雄, 等. 采用ALD方法制备TiO2/Al2O3布拉格反射镜并配合金属反射镜来增强背镀结构的反射效率[J]. 电子器件, 2013, 36(4): 431-436.

    Chen Hongjun, Guo Hao, Zhang Xiong, et al. High reflectance of backside reflector with a hybrid metallic mirror and ALD-TiO2/Al2O3 DBR[J]. Chinese J. of Electron Devices, 2013, 36(4): 431-436.

[14] Huang H W, Lin C H, Yu C C, et al. Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography[J]. Nanotechnol., 2008, 19(18): 185301.

[15] Chang S J. Nitride-based LEDs with a hybrid Al mirror+TiO2/SiO2 DBR backside reflector[J]. J. of Lightwave Technol., 2009, 26(17): 3131-3136.

[16] Kao C C, Yao H H. An optically pumped blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta205/SiO2 distributed Bragg reflectors[C]// IEEE Conf. on Lasers & Electro-Optics, 2006.

[17] Jeong T, Haeng Lee H, Park S H, et al. InGaN/AlGaN ultraviolet light-emitting diode with a Ti3O5/Al2O3 distributed Bragg reflector[J]. Jpn. J. Appl. Phys., 2014, 47(12): 8811-8814.

[18] Kim J K, Gessmann T, Luo H, et al. GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector[J]. Appl. Phys. Lett., 2004, 84(22): 4508-4510.

[19] Ban K Y, Hong H G, Noh D Y, et al. Ir/Ag reflector for high-performance GaN-based near UV light emitting diodes[J]. Materials Science & Engineering B, 2006, 133(1): 26-29.

[20] Markku Leskela, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

[21] Groner M D, Fabreguette F H, Elam J W, et al. Low-temperature Al2O3 atomic layer deposition[J]. Chemistry of Materials, 2004, 16(4): 639-645.

[22] Hu Z, Turner C H. Atomic layer deposition of TiO2 from TiI4 and H2O onto SiO2 surfaces: ab initio calculations of the initial reaction mechanisms[J]. J. of the American Chemical Society, 2007, 129(13): 3863-78.

[23] Xie Q, Jiang Y L, Detavernier C, et al. Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O[J]. J. of Appl. Phys., 2007, 102(8): 9198.

[24] Min J S, Son Y W, Kang W G, et al. Atomic layer deposition of TiN films by alternate supply of tetrakis(ethylmethylamino)titanium and ammonia[J]. Jap. J. of Appl. Phys., 1999, 37(9A): 4999-5004.

万颖, 吴昊, 刘昌. 原子层沉积法制备高反射率的分布式布拉格反射镜[J]. 半导体光电, 2019, 40(4): 528. WAN Ying, WU Hao, LIU Chang. Preparation of High Reflectivity Distributed Bragg Mirrors Based on Atomic Layer Deposition[J]. Semiconductor Optoelectronics, 2019, 40(4): 528.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!