红外与毫米波学报, 2017, 36 (5): 543, 网络出版: 2017-11-21  

具有86 mV/dec亚阈值摆幅的MoS2/SiO2场效应晶体管

86 mV/dec subthreshold swing of back-gated MoS2 FET on SiO2
作者单位
1 上海大学物理系 量子与分子结构国际中心, 材料基因研究院, 上海 200444
2 中科院上海微系统与信息技术研究所, 信息功能材料国家重点实验室, 上海 200050
3 深圳大学材料学院, 深圳市特种功能材料重点实验室, 深圳 518060
4 德国于利希研究中心, 于利希 52425,德国
摘要
在SiO2/Si(P++)衬底上制备了多层MoS2背栅器件并进行了测试.通过合理优化和采用10 nm SiO2 栅氧, 得到了良好的亚阈值摆幅86 mV/dec和约107倍的电流开关比.该器件具有较小的亚阈值摆幅和较小的回滞幅度, 表明该器件具有较少的界面态/氧化物基团吸附物.由栅极漏电造成的漏极电流噪声淹没了该器件在小电流(~10-13 A)处的信号, 限制了其开关比测量范围.基于本文以及前人工作中MoS2器件的表现, 基于薄层SiO2栅氧的MoS2器件表现出了良好的性能和潜力, 显示出丰富的应用前景.
Abstract
Back-gated (BG) Multi-layer MoS2 field effect transistors (FETs) have been fabricated on SiO2/Si(P++) substrate and electrically characterized. By optimizing the fabrication process and scaling down the SiO2 thickness to 10 nm, the device exhibit excellent switching performance with a subthreshold swing of 86 mV/dec and an Ion/Ioff ratio ~107. The little hysteresis and small SS jointly suggest tiny magnitude of interface traps or attached oxidants. The noise current induced by gate leakage can affect the measured switch ratio by overwhelming the effective Ioff current defined by VDS. According to the behaviors of MoS2 FETs expressed by this work and others’, BG devices with SiO2 insulator present good performance and valuable potentials underutilized for rich applications.
参考文献

[1] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors [J]. Acs Nano, 2011, 5(10):7707.

[2] Chen Min-Cheng, Lin Chia-Yi, Li Kai-Hsin, et al. Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for V th matching and CMOS-compatible 3DFETs [C]. Electron Devices Meeting (IEDM), 2014 IEEE International 2014:33.5.1.

[3] Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths [J]. Science, 2016, 354(6308):99.

[4] Jin K, Xie L M, Tian Y, et al. Au-Modified Monolayer MoS2 Sensor for DNA Detection [J]. Journal of Physical Chemistry C, 2016, 120(20):11204.

[5] Ye Lei, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4):692-699.

[6] Pu Jiang, Yomogida Y, Liu Keng-Ku, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics [J]. Nano Lett, 2012, 12(8):4013.

[7] Salvatore G A, Munzenrieder N, Barraud C, et al. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate [J]. Acs Nano, 2013, 7(10):8809.

[8] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors [J]. Nat Nanotechnol, 2011, 6(3):147.

[9] Das S, Appenzeller J. Screening and interlayer coupling in multilayer MoS2 [J]. Physica Status Solidi-Rapid Research Letters, 2013, 7(4):268.

[10] Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering [J]. Phys Rev Lett, 2007, 98(13):136805.

[11] Splendiani A, Sun Liang, Zhang Yuan-Bo, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Lett, 2010, 10(4):1271.

[12] Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors [J]. Applied Physics Letters, 2013, 102(17):173107.

[13] Pradhan N R, Rhodes D, Zhang Q, et al. Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2 [J]. Applied Physics Letters, 2013, 102(12):123105.

[14] Min S-W, Lee H S, Choi H J, et al. Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance [J]. Nanoscale, 2013, 5(2):548.

[15] Radisavljevic B, Radenovic A, Brivio J, et al. Single-Layer MoS2 Transistors [J]. Nat. Nanotechnol, 2011, 6:147.

[16] Li Tao, Wan Ben-Song, Du Gang, et al. Electrical performance of multilayer MoS2 transistors on high-k Al2O3 coated Si substrates [J]. AIP Advances, 2015, 5(5):057102.

[17] Bao Wen-Zhong, Cai Xing-Han, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors:Substrate and dielectric effects [J]. Applied Physics Letters, 2013, 102(4):042104.

[18] Ganapathi K L, Bhattacharjee S, Mohan S, et al. High-Performance HfO2 Back Gated Multilayer MoS2 Transistors [J]. IEEE Electron Device Letters, 2016, 37(6):797.

[19] Das S, Chen Hong-Yan, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts [J]. Nano Lett, 2013, 13(1):100.

[20] Ma Nan, Jena D. Charge Scattering and Mobility in Atomically Thin Semiconductors [J]. Physical Review X, 2014, 4(1):011043.

[21] Wang Feng-Lin, Stepanov P, Gray M, et al. Annealing and transport studies of suspended molybdenum disulfide devices [J]. Nanotechnology, 2015, 26(10):105709.

[22] Qiu Hao, Pan Li-Jia, Yao Zong-Ni, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances [J]. Applied Physics Letters, 2012, 100(12):123104.

[23] Yang S, Park S, Jang S, et al. Electrical stability of multilayer MoS2 field‐effect transistor under negative bias stress at various temperatures [J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(8):714.

[24] Wu Wei, De D, Chang Su-Chi, et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains [J]. Applied Physics Letters, 2013, 102(14):142106.

[25] Das S, Appenzeller J. Evaluating the scalability of multilayer MoS2 transistors [C]. Device Research Conference (DRC), 2013 71st Annual 2013:153.

[26] Yuan Hui, Cheng Guang-Jun, You Lin, et al. Influence of metal–MoS2 interface on MoS2 transistor performance:Comparison of Ag and Ti contacts [J]. ACS applied materials & interfaces, 2015, 7(2):1180.

[27] Ly T H, Perello D J, Zhao Jiong, et al. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries [J]. Nat Commun, 2016, 7:10426.

[28] Yoo G, Lee S, Yoo B, et al. Electrical contact analysis of multilayer MoS2 transistor with molybdenum source/drain electrodes [J]. IEEE Electron Device Letters, 2015, 36(11):1215.

[29] Park Y, Baac H W, Heo J, et al. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors [J]. Applied Physics Letters, 2016, 108(8):083102.

[30] Kolla L G, Bhattacharjee S, S M, et al. High Performance HfO2 Back Gated Multilayer MoS2 transistors [J]. IEEE Electron Device Letters, 2016:1.

[31] Sze S M, Ng K K. Physics of semiconductor devices [M].John wiley & sons, 2006.

[32] Wen Ming, Xu Jing-Ping, Liu Lu, et al. Improved Electrical Performance of Multilayer MoS2 Transistor With NH 3-Annealed ALD HfTiO Gate Dielectric [J]. IEEE Transactions on Electron Devices, 2017, 64(3):1020.

[33] Cheng Zhi-Hui, Cardenas J A, McGuire F, et al. Modifying the Ni-MoS2 Contact Interface Using a Broad-Beam Ion Source [J]. IEEE Electron Device Letters, 2016, 37(9):1234.

[34] Ghibaudo G. New method for the extraction of MOSFET parameters [J]. Electronics Letters, 1988, 24(9):543.

[35] Na Jun-Hong, Shin M, Joo M K, et al. Separation of interlayer resistance in multilayer MoS2 field-effect transistors [J]. Applied Physics Letters, 2014, 104(23):233502.

[36] Lee H S, Min S W, Chang Y G, et al. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap [J]. Nano Letters, 2012, 12(7):3695.

[37] Esmaeili-Rad M R, Salahuddin S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector [J]. Sci Rep, 2013, 3:2345.

[38] Yoon J, Park W, Bae G Y, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes [J]. Small, 2013, 9(19):3295.

[39] Liu Wei, Kang Jia-Hao, Cao Wei, et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance [C]. Electron Devices Meeting (IEDM), 2013 IEEE International 2013:19.4.1.

[40] Joo M K, Moon B H, Ji H, et al. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure [J]. Nano Lett, 2016, 16(10):6383.

[41] English C D, Shine G, Dorgan V E, et al. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition [J]. Nano Lett, 2016, 16(6):3824.

[42] Cheng Zhi-Hui, Cardenas J A, McGuire F, et al. Using Ar Ion beam exposure to improve contact resistance in MoS2 FETs [C]. Device Research Conference (DRC), 2016 74th Annual 2016:1.

[43] Late D J, Liu Bin, Matte H S, et al. Hysteresis in single-layer MoS2 field effect transistors [J]. Acs Nano, 2012, 6(6):5635.

[44] Li Tao, Du Gang, Zhang Bao-Shun, et al. Scaling behavior of hysteresis in multilayer MoS2 field effect transistors [J]. Applied Physics Letters, 2014, 105(9):093107.

[45] Cho K, Park W, Park J, et al. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors [J]. Acs Nano, 2013, 7(9):7751.

[46] Kiriya D, Tosun M, Zhao Pei-Da, et al. Air-Stable Surface Charge Transfer Doping of MoS2 by Benzyl Viologen [J]. Journal of the American Chemical Society, 2014, 136(22):7853.

[47] Houssa M, Tuominen M, Naili M, et al. Trap-assisted tunneling in high permittivity gate dielectric stacks [J]. Journal of Applied Physics, 2000, 87(12):8615.

[48] Yang Wen, Sun Qing-Qing, Geng Yang, et al. The Integration of Sub-10 nm Gate Oxide on MoS2 with Ultra Low Leakage and Enhanced Mobility [J]. Sci Rep, 2015, 5:11921.

[49] Wang Xiao, Zhang Tian-Bo, Yang Wen, et al. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment [J]. Applied Physics Letters, 2017, 110(5):053110.

[50] Kwon H-J, Jang J, Kim S, et al. Electrical characteristics of multilayer MoS2 transistors at real operating temperatures with different ambient conditions [J]. Applied Physics Letters, 2014, 105(15):152105.

[51] Roh J, Lee J-H, Jin S H, et al. Negligible hysteresis of molybdenum disulfide field-effect transistors through thermal annealing [J]. Journal of Information Display, 2016, 17(3):103.

[52] Chang H Y, Yang Shi-Xuan, Lee J, et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems [J]. Acs Nano, 2013, 7(6):5446.

[53] Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals [J]. Nat Commun, 2012, 3:1011.

[54] Takenaka M, Ozawa Y, Han J, et al. Quantitative evaluation of energy distribution of interface trap density at MoS2 MOS interfaces by the Terman method [C]. Electron Devices Meeting (IEDM), 2016 IEEE International 2016:5.8. 1.

[55] Wen Ming, Xu Jing-Ping, Liu Lu, et al. Effects of annealing on electrical performance of multilayer MoS2 transistors with atomic layer deposited HfO2 gate dielectric [J]. Applied Physics Express, 2016, 9(9):095202.

[56] Arora H, Seifert G, Cuniberti G, et al. Electrical characterization of two-dimensional materials and their heterostructures [C]. Radio and Antenna Days of the Indian Ocean (RADIO), 2016 IEEE 2016:1.

[57] Kang Jia-Hao, Liu Wei, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts [J]. Applied Physics Letters, 2014, 104(9):093106.

[58] Kobayashi T, Hori N, Nakajima T, et al. Electrical characteristics of MoS2 field-effect transistor with ferroelectric vinylidene fluoride-trifluoroethylene copolymer gate structure [J]. Applied Physics Letters, 2016, 108(13):132903. .

[59] Ko C, Lee Y, Chen Ya-Bin, et al. Ferroelectrically Gated Atomically Thin Transition-Metal Dichalcogenides as Nonvolatile Memory[J]. Advanced Materials, 2016.

刘强, 蔡剑辉, 何佳铸, 王翼泽, 张栋梁, 刘畅, 任伟, 俞文杰, 刘新科, 赵清太. 具有86 mV/dec亚阈值摆幅的MoS2/SiO2场效应晶体管[J]. 红外与毫米波学报, 2017, 36(5): 543. LIU Qiang, CAI Jian-Hui, HE Jia-Zhu, WANG Yi-Ze, ZHANG Dong-Liang, LIU Chang, REN Wei, YU Wen-Jie, LIU Xin-Ke, ZHAO Qing-Tai. 86 mV/dec subthreshold swing of back-gated MoS2 FET on SiO2[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 543.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!