激光与光电子学进展, 2019, 56 (7): 070005, 网络出版: 2019-07-30   

无标记显微成像技术的研究进展 下载: 2380次

Research Progress on Label-Free Microscopic Imaging Technology
作者单位
深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
引用该论文

张佳, 洪亮, 任升, 周非凡, 胡睿, 屈军乐, 刘丽炜. 无标记显微成像技术的研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070005.

Jia Zhang, Liang Hong, Sheng Ren, Feifan Zhou, Rui Hu, Junle Qu, Liwei Liu. Research Progress on Label-Free Microscopic Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070005.

参考文献

[1] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8206-8210.

[2] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

[3] Nakayama Y, Pauzauskie P J, Radenovic A, et al. Tunable nanowire nonlinear optical probe[J]. Nature, 2007, 447(7148): 1098-1101.

[4] Yao J J, Wang L D, Li C Y, et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 2014, 112(1): 014302.

[5] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[6] Raghunathan R, Singh M, Dickinson M, et al. Optical coherence tomography for embryonic imaging: a review[J]. Journal of Biomedical Optics, 2016, 21(5): 050902.

[7] Aydin A, Wollstein G, Price L L, et al. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery[J]. Ophthalmology, 2003, 110(8): 1506-1511.

[8] Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

[9] Zhang Q Q, Huang Y P, Zhang T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking[J]. Journal of Biomedical Optics, 2015, 20(6): 066008.

[10] Tearney G J, Bouma B E. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis[J]. Optics Letters, 2002, 27(7): 533-535.

[11] Motaghian N S M, Joo C, Tearney G J, et al. . Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy[J]. Optics Express, 2008, 16(22): 17186-17195.

[12] D'amico A V, Weinstein M, Li X D, et al. . Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland[J]. Urology, 2000, 55(5): 783-787.

[13] Welzel J. Optical coherence tomography in dermatology: a review[J]. Skin Research and Technology, 2001, 7(1): 1-9.

[14] Baumgartner A, Dichtl S, Hitzenberger C K, et al. Polarization-sensitive optical coherence tomography of dental structures[J]. Caries Research, 2000, 34(1): 59-69.

[15] Leitgeb R A, Werkmeister R M, Blatter C, et al. Doppler optical coherence tomography[J]. Progress in Retinal and Eye Research, 2014, 41: 26-43.

[16] Liu G J, Chen Z P. Advances in Doppler OCT[J]. Chinese Optics Letters, 2013, 11(1): 011702.

[17] Diebold G J, Sun T, Khan M I. Photoacoustic monopole radiation in one, two, and three dimensions[J]. Physical Review Letters, 1991, 67(24): 3384-3387.

[18] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.

[19] Maslov K, Zhang H F, Hu S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.

[20] Song L, Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 2011, 36(7): 1236-1238.

[21] Aguirre J, Schwarz M, Soliman D, et al. Broadband mesoscopic optoacoustic tomography reveals skin layers[J]. Optics Letters, 2014, 39(21): 6297-6300.

[22] Wang X D, Pang Y J, Ku G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 2003, 21(7): 803-806.

[23] Lin H C A, Chekkoury A, Omar M, et al. . Selective plane illumination optical and optoacoustic microscopy for postembryonic imaging[J]. Laser & Photonics Reviews, 2015, 9(5): L29-L34.

[24] Park K, Kim J Y, Lee C, et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 2017, 7: 13359.

[25] Tian C, Zhang W, Mordovanakis A, et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Express, 2017, 25(14): 15947-15955.

[26] Chu S W, Chen S Y, Tsai T H, et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy[J]. Optics Express, 2003, 11(23): 3093-3099.

[27] Fine S, Hansen W P. Optical second harmonic generation in biological systems[J]. Applied Optics, 1971, 10(10): 2350-2353.

[28] Bancelin S, Aimé C, Gusachenko I, et al. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals[J]. Nature Communications, 2014, 5: 4920.

[29] Small D M, Jones J S, Tendler I I, et al. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy[J]. Biomedical Optics Express, 2018, 9(1): 214-229.

[30] Gauderon R, Lukins P B. Sheppard C J R. Simultaneous multichannel nonlinear imaging: combined two-photon excited fluorescence and second-harmonic generation microscopy[J]. Micron, 2001, 32(7): 685-689.

[31] Mahou P, Olivier N, Labroille G, et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos[J]. Biomedical Optics Express, 2011, 2(10): 2837-2849.

[32] Segawa H, Okuno M, Kano H, et al. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation)[J]. Optics Express, 2012, 20(9): 9551-9557.

[33] Nan X L, Potma E O, Xie X S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy[J]. Biophysical Journal, 2006, 91(2): 728-735.

[34] Eckhardt G, Hellwarth R W. McClung F J, et al. Stimulated Raman scattering from organic liquids[J]. Physical Review Letters, 1962, 9(11): 455-458.

[35] Lee J Y, Hong B H, Kim W Y, et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses[J]. Nature, 2009, 460(7254): 498-501.

[36] Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218-224.

[37] Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104.

[38] Huszka G, Yang H. Gijs M A M. Microsphere-based super-resolution scanning optical microscope[J]. Optics Express, 2017, 25(13): 15079-15092.

[39] Hong G S, Lee J C, Robinson J T, et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence[J]. Nature Medicine, 2012, 18(12): 1841-1846.

[40] Yang V X D, Gordon M L, Seng-Yue E, et al. . High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of xenopus laevis[J]. Optics Express, 2003, 11(14): 1650-1658.

[41] Sudheendran N, Syed S H, Dickinson M E, et al. Speckle variance OCT imaging of the vasculature in live mammalian embryos[J]. Laser Physics Letters, 2011, 8(3): 247-252.

[42] Peterson L M, Jenkins M W, Gu S, et al. 4D shear stress maps of the developing heart using Doppler optical coherence tomography[J]. Biomedical Optics Express, 2012, 3(11): 3022-3032.

[43] Wang S, Lopez A L, Larina I V. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis[J]. Proceedings of SPIE, 2018, 10493: 104930C.

[44] Kruger R A, Lam R B, Reinecke D R, et al. Photoacoustic angiography of the breast[J]. Medical Physics, 2010, 37(11): 6096-6100.

[45] Ku G, Fornage B D, Jin X, et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging[J]. Technology in Cancer Research & Treatment, 2005, 4(5): 559-566.

[46] Matsumoto Y, Asao Y, Yoshikawa A, et al. Label-free photoacoustic imaging of human palmar vessels: a structural morphological analysis[J]. Scientific Reports, 2018, 8: 786.

[47] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nature Reviews Cancer, 2005, 5(3): 161-171.

[48] Yao J J. Wang L H V. Photoacoustic brain imaging: from microscopic to macroscopic scales[J]. Neurophotonics, 2014, 1(1): 011003.

[49] Lui H, Zhao J. McLean D, et al. Real-time Raman spectroscopy for in vivo skin cancer diagnosis[J]. Cancer Research, 2012, 72(10): 2491-2500.

[50] He J P, Wang N, Tsurui H, et al. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: differentiate malignant melanoma from benign tumor tissue[J]. Scientific Reports, 2016, 6: 30209.

[51] Stummer W. 5-aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging[J]. Neurosurgery, 2015, 76(2): 230-231.

[52] Kut C, Chaichana K L, Xi J F, et al. 7(292): 292ra100[J]. in vivo using quantitative optical coherence tomography. Science Translational Medicine, 2015.

[53] Ji M B, Orringer D A, Freudiger C W, et al. 5(201): 201ra119[J]. label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine, 2013.

[54] JermynM, MokK, MercierJ, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science Translational Medicine, 2015, 7(274): 274ra19.

[55] Kuzmin N V. Wesseling P, de Witt Hamer P C, et al. Third harmonic generation imaging for fast, label-free pathology of human brain tumors[J]. Biomedical Optics Express, 2016, 7(5): 1889-1904.

[56] Losick R, Desplan C. Stochasticity and cell fate[J]. Science, 2008, 320(5872): 65-68.

[57] Muzzey D, van Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells[J]. Annual Review of Cell and Developmental Biology, 2009, 25(1): 301-327.

[58] Wang L D, Maslov K. Wang L H V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5759-5764.

[59] He G, Xu D, Qin H, et al. In vivo cell characteristic extraction and identification by photoacoustic flow cytography[J]. Biomedical Optics Express, 2015, 6(10): 3748-3756.

[60] Zhao Y, Yang S H, Chen C G, et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 2014, 39(9): 2565-2568.

[61] Marrison J, Räty L, Marriott P, et al. Ptychography-a label free, high-contrast imaging technique for live cells using quantitative phase information[J]. Scientific Reports, 2013, 3: 2369.

[62] Lim H, Sharoukhov D, Kassim I, et al. Label-free imaging of Schwann cell myelination by third harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 18025-18030.

[63] Jüngst C, Klein M, Zumbusch A. Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes[J]. Journal of Lipid Research, 2013, 54(12): 3419-3429.

[64] Kim G, Lee S, Shin S, et al. Three-dimensional label-free imaging and analysis of pinus pollen grains using optical diffraction tomography[J]. Scientific Reports, 2018, 8: 1782.

[65] Liu X W, Kuang C F, Hao X, et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Physical Review Letters, 2017, 118(7): 076101.

[66] Chen Z J, Yang S H, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 2016, 41(7): 1636-1639.

[67] Meng X Q, Yang Y T, Zhou L H, et al. Dual-responsive molecular probe for tumor targeted imaging and photodynamic therapy[J]. Theranostics, 2017, 7(7): 1781-1794.

张佳, 洪亮, 任升, 周非凡, 胡睿, 屈军乐, 刘丽炜. 无标记显微成像技术的研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070005. Jia Zhang, Liang Hong, Sheng Ren, Feifan Zhou, Rui Hu, Junle Qu, Liwei Liu. Research Progress on Label-Free Microscopic Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!