Photonic Sensors, 2017, 7 (2): 171–181, Published Online: May. 9, 2017  

Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent Smoothing Evaluation Model

Author Affiliations
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
2 University of Chinese Academy of Sciences, Beijing, 100049, China
3 Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, 130033, China
Copy Citation Text

Chi SONG, Xuejun ZHANG, Xin ZHANG, Haifei HU, Xuefeng ZENG. Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent Smoothing Evaluation Model[J]. Photonic Sensors, 2017, 7(2): 171–181.

References

[1] J. Nelson and G. H. Sanders, “The status of the thirty meter telescope project,” SPIE, 2008, 7012: 70121A-1 70121A-18.

[2] M. Johns, P. Mccarthy, K. Raybould, A. Bouchez, A. Farahani, J. Filgueira, et al., “Giant magellan telescope: overview,” SPIE, 2012, 8444: 84441H-1 84441H-16.

[3] T. Hull, M. J. Riso, J. M. Barentine, and A. Magruder, “Mid-spatial frequency matters: examples of the control of the power spectral density and what that means to the performance of imaging systems,” SPIE, 2012, 8353: 835329-1 835329-17.

[4] D. W. Kim and J. H. Burge, “Rigid conformal polishing tool using non-linear visco-elastic effect,” Optics Express, 2010, 18(3): 2242 2257.

[5] H. M. Martin, D. S. Anderson, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8-mf/1 mirror,” SPIE, 1990, 1236: 682 690.

[6] J. H. Burge, B. Anderson, S. Benjamin, M. K. Cho, K. Z. Smith, and M. J. Valente, “Development of optimal grinding and polishing tools for aspheric surfaces,” SPIE, 1990, 4451: 153 164.

[7] Y. Shu, X. Nie, F. Shi, and S. Li, “Compare study between smoothing efficiencies of epicyclic motion and orbital motion,” Optik International Journal for Light and Electron Optics, 2014, 125(16): 4441 4445.

[8] N. J. Brown, P. C. Baker, and R. E. Parks, “Polishing-to-figuring transition in turned optics,” Contemporary Methods of Optical Fabrication, 1981, 306(6): 58 65.

[9] R. A. Jones, “Computer simulation of smoothing during computer-controlled optical polishing,” Applied Optics, 1995, 34(7): 1162 1169.

[10] P. K. Mehta and P. B. Reid, “Mathematical model for optical smoothing prediction of high-spatial- frequency surface errors,” SPIE, 1999, 3786: 447 459.

[11] M. T. Tuell, J. H. Burge, and B. Anderson. “Aspheric optics: Smoothing the ripples with semi-flexible tools,” Optical Engineering, 2002, 15(2): 1473 1474.

[12] D. W. Kim, W. H. Park, H. K. An, and J. H. Burge, “Parametric smoothing model for visco-elastic polishing tools,” Optics Express, 2010, 18(21): 22515 22526.

[13] Y. Shu, D. W. Kim, H. M. Martin, and J. H. Burge, “Correlation-based smoothing model for optical polishing,” Optics Express, 2013, 21(23): 28771 28782.

[14] Y. Shu, X. Nie, F. Shi, and S. Li, “Smoothing evolution model for computer controlled optical surfacing,” Journal of Optical Technology, 2014, 81(3): 164 167.

[15] X. Nie, S. Li, F. Shi, and H. Hu, “Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors,” Applied Optics, 2014, 53(6): 1020 1027.

[16] A. C. Fischer-Cripps, “Multiple-frequency dynamic nanoindentation testing,” Journal of Materials Research, 2004, 19(19): 2981 2988.

[17] J. H. Burge, D. W. Kim, and H. M. Martin, “Process optimization for polishing large aspheric mirrors,” SPIE, 2014, 9151: 91512R-1 91512R-13.

Chi SONG, Xuejun ZHANG, Xin ZHANG, Haifei HU, Xuefeng ZENG. Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent Smoothing Evaluation Model[J]. Photonic Sensors, 2017, 7(2): 171–181.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!