光子学报, 2019, 48 (3): 0322001, 网络出版: 2019-04-02   

超短焦投影系统中自由曲面的多视场优化迭代设计方法

Multi-fields Optimization Iterative Design Method for Freeform Surface in Ultra-short-focus Projection System
作者单位
1 中国科学院长春光学精密机械与物理研究所 超精密光学工程研究中心, 长春 130033
2 中国科学院大学, 北京 100049
3 长春国科精密光学技术有限公司, 长春 130033
摘要
为解决超短焦投影系统中自由曲面反射镜的设计难题, 提出一种适用于大视场成像光学系统的自由曲面设计方法, 即多视场优化迭代法.该方法以一个反射平面作为设计起始面, 基于多视场下物像的对应关系, 并根据反射面的法线方向, 通过加权优化迭代计算得到自由曲面反射面的形貌.采用基于该方法得到的自由曲面优化设计了一种折反式超短焦投影物镜, 可将0.65 inch的数字微镜器件芯片在230 mm投影距离处放大为100 inch的投影画面.物镜的调制传递函数在0.43 lp/mm处优于0.4, 最大畸变优于1%.该方法简单易行, 可为大视场成像系统中自由曲面的设计提供有益参考.
Abstract
In order to solve the design problem of freeform mirror in ultra-short-focus projection system, a method of freeform surface design for large field of view imaging optical system is proposed, which is called multi-field optimization iteration method. In this method, a reflection plane is used as the design starting surface. Based on the corresponding relationship between objects and images in multi-field, and according to the normal direction vectors of the reflector, the freeform surface is obtained by weighted iterative optimization. Based on the freeform surface obtained by this method, a refractive-reflective combined ultra-short-focus projection objective is designed, which can magnify the 0.65 inch digital micromirror device chip to 100 inch projection screen at the projection distance of 230 mm. The modulation transfer function of the objective system is better than 0.4 at 0.43 lp/mm and the maximum distortion is less than 1%. This method is simple and feasible, which can provide useful reference for the design of freeform surface in large field of view imaging system.
参考文献

[1] 陈琛, 李维善, 张禹, 等. 短焦数字投影镜头的光学设计[J]. 光子学报, 2011, 40(12): 1855-1859.

    CHEN Chen, LI Wei-shan, ZHANG Yu, et al. Optical design of short digital projection lens[J]. Acta Photonica Sinica, 2011, 40(12): 1855-1859.

[2] 李维善, 陈琛, 张禹, 等. 基于ZEMAX软件的短焦数字投影镜头的设计[J]. 应用光学, 2010, 31(5): 714-717.

    LI Wei-shan, CHEN Chen, ZHANG Yu, et al. Design of short focal digital projection lens based on ZEMAX[J]. Journal of Applied Optics, 2010, 31(5): 714-717.

[3] KUMLER J J, BAUER M L. Fish-eyelens designs and their relative performance[C]. International Symposium on Optical Science and Technology, International Society for Optics and Photonics, 2000: 360-369.

[4] 卞殷旭, 王恒, 郭添翼, 等. 超短投影距的投影物镜设计[J]. 光学学报, 2015, 35(12): 1222002.

    BIAN Yin-xu, WANG Heng, GUO Tian-yi,et al. Design of ultra-short throw ratio projection lens[J]. Acta Optica Sinica, 2015, 35(12): 1222002.

[5] GAO Yang, CHENG De-wen, XU Chen,et al. Design of an ultra-short throw catadioptric projection lens with a freeform mirror[C]. SPIE, 2016, 10154: 101540S.

[6] YANG Bo, LU Kan, ZHANG Wei,et al. Design of a free-form lens system for short distance projection[C]. SPIE, 2011, 8128: 81280E.

[7] 李旭阳, 倪栋伟, 杨明洋, 等. 基于自由曲面的大视场空间相机光学系统设计[J]. 光子学报, 2018, 47(9): 0922003.

    LI Xu-yang, NI Dong-wei, YANG Ming-yang,et al. Design of large field of view space camera optical system based on freeform surfaces[J]. Acta Photonica Sinica, 2018, 47(9): 0922003.

[8] YANG Tong, CHENG De-wen, WANG Yong-tian. Freeform imaging spectrometer design using a point-by-point design method[J].Applied Optics, 2018, 57(16): 4718-4727.

[9] SHIKAMA S, SUZUKI H, TERAMOTO K. Optical system of ultra-thin rear projector equipped with refractive-reflective projection optics[C]. The Society for Information Display Symposium Digest, 2002, 46(2): 1250-1253.

[10] MATSUMOTO S, AMANO R, OKUDA M,et al. Ultra-short throw distance front projector with mirror-lens hybrid projection optical system[C]. Consumer Electronics, 2008, 1-2.

[11] 李润芝, 杨波, 张婧京, 等. 采用折反式成像的超短焦距投影物镜设计[J]. 光学技术, 2018, 44(3): 305-309.

    LI Run-zhi, YANG Bo, ZHANG Jing-jing,et al. Design of ultra-short focal length catadioptric projection lens[J]. Optical Technique, 2018, 44(3): 305-309.

[12] CHENG De-wen, WANG Yong-tian, HUA Hong. Freeform optical system design with differential equations[C]. SPIE, 2010, 7849: 78490Q.

[13] MUOZA F, BENTEZB P, MIANO J C. High-order aspherics: The SMS nonimaging design method applied to imaging optics[C]. SPIE, 2008, 7100: 71000K.

[14] MIANO J C, BENTEZ P, LIN W, et al. An application of the SMS method for imaging designs[J]. Optics Express, 2009, 17(26): 24036-24044.

[15] YANG Tong, ZHU Jun, WU Xiao-fei, et al. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method[J]. Optics Express, 2015, 23(8): 10233-10246.

[16] YANG Tong, ZHU Jun, HOU Wei, et al. Design method of freeform off-axis reflective imaging systems with a direct construction process[J]. Optics Express,2014, 22(8): 9193-9205.

[17] ZHU Jun, WU Xiao-fei, YANG Tong, et al. Generating optical freeform surfaces considering both coordinates and normal of discrete data points[J]. Journal of the Optical Society of America A, 2014, 31(11): 2401-2408.

[18] 杨建明, 刘伟奇, 孟祥翔, 等. 同轴超短焦距折反式投影系统设计[J]. 液晶与显示, 2015, 30(5): 864-871.

    YANG Jian-ming, LIU Wei-qi, MENG Xiang-xiang, et al. Design of coaxial short focal length catadioptric projection system[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 864-871.

于百华, 田志辉, 苏东奇, 高松涛, 隋永新, 杨怀江. 超短焦投影系统中自由曲面的多视场优化迭代设计方法[J]. 光子学报, 2019, 48(3): 0322001. YU Bai-hua, TIAN Zhi-hui, SU Dong-qi, GAO Song-tao, SUI Yong-xin, YANG Huai-jiang. Multi-fields Optimization Iterative Design Method for Freeform Surface in Ultra-short-focus Projection System[J]. ACTA PHOTONICA SINICA, 2019, 48(3): 0322001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!