中国激光, 2020, 47 (2): 0207005, 网络出版: 2020-02-21   

相干拉曼散射显微技术及其在生物医学领域的应用 下载: 3086次特邀综述

Coherent Raman Scattering Microscopy Technique and Its Biomedical Applications
作者单位
深圳大学物理与光电工程学院, 电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
引用该论文

李姿霖, 李少伟, 张思鹭, 沈炳林, 屈军乐, 刘丽炜. 相干拉曼散射显微技术及其在生物医学领域的应用[J]. 中国激光, 2020, 47(2): 0207005.

Li Zilin, Li Shaowei, Zhang Silu, Shen Binglin, Qu Junle, Liu Liwei. Coherent Raman Scattering Microscopy Technique and Its Biomedical Applications[J]. Chinese Journal of Lasers, 2020, 47(2): 0207005.

参考文献

[1] 邓月月, 叶贤其, 曹博, 等. 荧光显微成像用于研究卵母细胞减数分裂过程[J]. 中国激光, 2018, 45(5): 0507002.

    Deng Y Y, Ye X Q, Cao B, et al. Application of fluorescence microscopy in research of oocyte meiosis[J]. Chinese Journal of Lasers, 2018, 45(5): 0507002.

[2] 郑世凯, 杨康文, 敖建鹏, 等. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008.

    Zheng S K, Yang K W, Ao J P, et al. Advances in fiber laser sources for coherent Raman scattering microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008.

[3] Maker P D, Terhune R W. Study of optical effects due to an induced polarization third order in the electric field strength[J]. Physical Review, 1965, 137: 801-818.

[4] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 1982, 7(8): 350-352.

[5] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.

[6] Cheng J X, Book L D, Xie X S. Polarization coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2001, 26(17): 1341-1343.

[7] Cheng J X, Volkmer A, Book L D, et al. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles[J]. The Journal of Physical Chemistry B, 2002, 106(34): 8493-8498.

[8] Woodbury E J, Ng W K. Ruby laser operation in near IR[J]. Proceedings of the Institute of Radio Engineers, 1962, 50(11): 2367.

[9] Ploetz E, Laimgruber S, Berner S, et al. Femtosecond stimulated Raman microscopy[J]. Applied Physics B, 2007, 87(3): 389-393.

[10] Freudiger C W, Min W, Saar B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.

[11] Saar B G, Freudiger C W, Reichman J, et al. Video-rate molecular imaging in vivo with stimulated Raman scattering[J]. Science, 2010, 330(6069): 1368-1370.

[12] Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy[J]. Nature, 2002, 418(6897): 512-514.

[13] Bremer M T, Dantus M. Standoff explosives trace detection and imaging by selective stimulated Raman scattering[J]. Applied Physics Letters, 2013, 103(6): 061119.

[14] Cheng J X, Volkmer A, Book L D, et al. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity[J]. The Journal of Physical Chemistry B, 2001, 105(7): 1277-1280.

[15] Parekh S H, Lee Y J, Aamer K A, et al. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy[J]. Biophysical Journal, 2010, 99(8): 2695-2704.

[16] Camp C H. Jr, Lee Y J, Heddleston J M, et al. High-speed coherent Raman fingerprint imaging of biological tissues[J]. Nature Photonics, 2014, 8(8): 627-634.

[17] Rocha-Mendoza I, Langbein W, Borri P. Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion[J]. Applied Physics Letters, 2008, 93(20): 201103.

[18] Hellerer T. Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Applied Physics Letters, 2004, 85(1): 25-27.

[19] Langbein W, Rocha-Mendoza I, Borri P. Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment[J]. Journal of Raman Spectroscopy, 2009, 40(7): 800-808.

[20] Chen B C, Sung J, Wu X X, et al. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering[J]. Journal of Biomedical Optics, 2011, 16(2): 021112.

[21] Masia F, Glen A, Stephens P, et al. Quantitative chemical imaging and unsupervised analysis using hyperspectral coherent anti-Stokes Raman scattering microscopy[J]. Analytical Chemistry, 2013, 85(22): 10820-10828.

[22] Pegoraro A F, Ridsdale A, Moffatt D J, et al. Optimally chirped multimodal CARS microscopy based on a single Ti∶sapphire oscillator[J]. Optics Express, 2009, 17(4): 2984-2996.

[23] Vartiainen E M, Rinia H A, Müller M, et al. Direct extraction of Raman line-shapes from congested CARS spectra[J]. Optics Express, 2006, 14(8): 3622-3630.

[24] Liu Y X, Lee Y J, Cicerone M T. Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform[J]. Optics Letters, 2009, 34(9): 1363-1365.

[25] Garbacik E T, Herek J L, Otto C, et al. Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging[J]. Journal of Raman Spectroscopy, 2012, 43(5): 651-655.

[26] Slipchenko M N, Oglesbee R A, Zhang D L, et al. Heterodyne detected nonlinear optical imaging in a lock-in free manner[J]. Journal of Biophotonics, 2012, 5(10): 801-807.

[27] Suhalim J L, Chung C Y, Lilledahl M B, et al. Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy[J]. Biophysical Journal, 2012, 102(8): 1988-1995.

[28] Zhang D L, Wang P, Slipchenko M N, et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis[J]. Analytical Chemistry, 2013, 85(1): 98-106.

[29] Wang K, Zhang D L, Charan K, et al. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis[J]. Journal of Biophotonics, 2013, 6(10): 815-820.

[30] Wang P, Li J J, Wang P, et al. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy[J]. Angewandte Chemie International Edition, 2013, 52(49): 13042-13046.

[31] Fu D, Holtom G, Freudiger C, et al. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers[J]. The Journal of Physical Chemistry B, 2013, 117(16): 4634-4640.

[32] Fu D, Zhou J, Zhu W S, et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering[J]. Nature Chemistry, 2014, 6(7): 614-622.

[33] Fu D, Lu F K, Zhang X, et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy[J]. Journal of the American Chemical Society, 2012, 134(8): 3623-3626.

[34] Lu F K, Ji M B, Fu D, et al. Multicolor stimulated Raman scattering microscopy[J]. Molecular Physics, 2012, 110(15/16): 1927-1932.

[35] Nan X L, Cheng J X, Xie X S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy[J]. Journal of Lipid Research, 2003, 44(11): 2202-2208.

[36] Mitra R, Chao O, Urasaki Y, et al. Detection of lipid-rich prostate circulating tumour cells with coherent anti-Stokes Raman scattering microscopy[J]. BMC Cancer, 2012, 12: 540.

[37] Okuno M, Kano H, Fujii K, et al. Surfactant uptake dynamics in mammalian cells elucidated with quantitative coherent anti-Stokes Raman scattering microspectroscopy[J]. PLoS One, 2014, 9(4): e93401.

[38] di Napoli C, Pope I, Masia F, et al. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes[J]. Biomedical Optics Express, 2014, 5(5): 1378-1390.

[39] Fu Y, Wang H F, Huff T B, et al. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination[J]. Journal of Neuroscience Research, 2007, 85(13): 2870-2881.

[40] Shi Y Z, Kim S, Huff T B, et al. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles[J]. Nature Nanotechnology, 2010, 5(1): 80-87.

[41] Huff T B, Cheng J X. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue[J]. Journal of Microscopy, 2007, 225(2): 175-182.

[42] Jung Y, Ng J H, Keating C P, et al. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model[J]. PLoS One, 2014, 9(4): e94054.

[43] Wang H F, Fu Y, Zickmund P, et al. Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues[J]. Biophysical Journal, 2005, 89(1): 581-591.

[44] Lim R S, Suhalim J L, Miyazaki-Anzai S, et al. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging[J]. Journal of Lipid Research, 2011, 52(12): 2177-2186.

[45] Meyer T, Chemnitz M, Baumgartl M, et al. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics[J]. Analytical Chemistry, 2013, 85(14): 6703-6715.

[46] Galli R, Uckermann O, Koch E, et al. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain[J]. Journal of Biomedical Optics, 2014, 19(7): 071402.

[47] Hellerer T, Axang C, Brackmann C, et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy[J]. Proceedings of the National Academy of Sciences, 2007, 104(37): 14658-14663.

[48] Yen K, Le T T, Bansal A, et al. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods[J]. PLoS One, 2010, 5(9): e12810.

[49] Le T T, Duren H M, Slipchenko M N, et al. Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans[J]. Journal of Lipid Research, 2010, 51(3): 672-677.

[50] Le T T, Huff T B, Cheng J X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis[J]. BMC Cancer, 2009, 9: 42.

[51] Breunig H G, Weinigel M, Bückle R, et al. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber[J]. Laser Physics Letters, 2013, 10(2): 025604.

[52] Zhang X. Roeffaers M B J, Basu S, et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy[J]. ChemPhysChem, 2012, 13(4): 1054-1059.

[53] Ji M, Orringer D A, Freudiger C W, et al. 5(201): 201ra119[J]. label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine, 2013.

[54] Freudiger C W, Pfannl R, Orringer D A, et al. Multicolored stain-free histopathology with coherent Raman imaging[J]. Laboratory Investigation, 2012, 92(10): 1492-1502.

[55] Li J J, Condello S, Thomes-Pepin J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 2017, 20(3): 303-314.

[56] Yue S H, Li J J, Lee S Y, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metabolism, 2014, 19(3): 393-406.

[57] Ji MB, ArbelM, Zhang LL, et al., 2018, 4(11): eaat7715.

[58] Yan S, Cui S S, Ke K, et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 2018, 90(11): 6362-6366.

[59] Zhang L L, Zou X, Zhang B H, et al. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy[J]. Theranostics, 2018, 8(15): 4129-4140.

[60] Zhang B H, Sun M X, Yang Y F, et al. Rapid, large-scale stimulated Raman histology with strip mosaicing and dual-phase detection[J]. Biomedical Optics Express, 2018, 9(6): 2604-2613.

[61] Zhang L L, Wu Y Z, Zheng B, et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 2019, 9(9): 2541-2554.

[62] Hu C R, Zhang D L, Slipchenko M N, et al. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy[J]. Journal of Biomedical Optics, 2014, 19(8): 086005.

[63] Zhang D L, Slipchenko M N, Cheng J X. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss[J]. The Journal of Physical Chemistry Letters, 2011, 2(11): 1248-1253.

[64] Wang M C, Min W, Freudiger C W, et al. RNAi screening for fat regulatory genes with SRS microscopy[J]. Nature Methods, 2011, 8(2): 135-138.

[65] Wang P, Liu B, Zhang D L, et al. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations[J]. Angewandte Chemie International Edition, 2014, 53(44): 11787-11792.

[66] Li X S, Li Y, Jiang M J, et al. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy[J]. Analytical Chemistry, 2019, 91(3): 2279-2287.

[67] Chen Z X, Paley D W, Wei L, et al. Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette[J]. Journal of the American Chemical Society, 2014, 136(22): 8027-8033.

[68] Seidel J, Miao Y P, Porterfield W, et al. Structure-activity-distribution relationship study of anti-cancer antimycin-type depsipeptides[J]. Chemical Communications, 2019, 55(63): 9379-9382.

李姿霖, 李少伟, 张思鹭, 沈炳林, 屈军乐, 刘丽炜. 相干拉曼散射显微技术及其在生物医学领域的应用[J]. 中国激光, 2020, 47(2): 0207005. Li Zilin, Li Shaowei, Zhang Silu, Shen Binglin, Qu Junle, Liu Liwei. Coherent Raman Scattering Microscopy Technique and Its Biomedical Applications[J]. Chinese Journal of Lasers, 2020, 47(2): 0207005.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!