中国激光, 2016, 43 (8): 0810001, 网络出版: 2016-08-10   

环境温度变化对夏克-哈特曼波前传感器测量精度影响分析 下载: 535次

Analysis of Effect of Ambient Temperature Variation on Measurement Accuracy of Shack-Hartmann Wavefront Sensor
孟庆宾 1,2,3,*齐月静 1,2卢增雄 1,2苏佳妮 1,2高斐 1,2,3
作者单位
1 中国科学院光电研究院, 北京 100094
2 北京市准分子激光工程技术研究中心, 北京 100094
3 中国科学院大学, 北京 100049
摘要
环境温度变化是影响夏克哈特曼波前传感器(SHWS)测量精度的重要因素之一。采用Zemax软件热分析功能,分析了环境温度变化引起的微透镜阵列(MLA)变形及折射率变化、MLA和电荷耦合器件(CCD)间距变化以及球面波点源与SHWS间距变化对SHWS测量精度的影响。分析计算得出,环境温度变化引起的MLA和CCD间距变化是影响SHWS测量精度的主要因素,环境温度在21~24 ℃内每增加1 ℃,给测量结果带来的误差[均方根(RMS)]约为0.52 nm 。通过单模光纤衍射产生近于理想的球面波对SHWS测量精度进行实验验证,实验结果和仿真分析结果基本一致。
Abstract
Ambient temperature variation is one of the key factors that affect the measurement accuracy of Shack-Hartmann wavefront sensor (SHWS). The influence of the distortion of micro-lens array (MLA) and the refractive index variation, the distance changes between MLA and charge coupled device(CCD), and the distance change between spherical point source and SHWS on measurement accuracy of SHWS are analyzed by using the thermal analysis function of Zemax software, which is caused by ambient temperature variation. The analysis and calculation show that the main factor affecting the measurement accuracy of SHWS is the distance change between MLA and CCD caused by ambient temperature variation. The measurement error is 0.52 nm root mean square(RMS) when the ambient temperature rises every 1 ℃ from 21 ℃ to 24 ℃. The experiments of testing the measurement accuracy of SHWS are carried out by using a nearly perfect spherical wave generated by single mode optical fiber diffraction. The results obtained from simulation and experiment are basically identical.
参考文献

[1] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. J Refract Surg, 2001, 17(5): S573-S577.

[2] 姜文汉, 张雨东, 饶长辉, 等. 中国科学院光电技术研究所的自适应光学研究进展[J]. 光学学报, 2011, 31(9): 0900106.

    Jiang Wenhan, Zhang Yudong, Rao Changhui, et al. Progress on adaptive optics of institute of optics and electronics, Chinese academy of sciences[J]. Acta Optica Sinica, 2011, 31(9): 0900106.

[3] 郑贤良, 刘瑞雪, 夏明亮, 等. 高频采样下人眼波像差特性研究[J]. 光学学报, 2014, 34(7): 0733001.

    Zheng Xianliang, Liu Ruixue, Xia Mingliang, et al. Temporal properties study of ocular wave aberrations with high frequency sampling[J]. Acta Optica Sinica, 2014, 34(7): 0733001.

[4] 鲍华, 饶长辉, 张雨东, 等. 一种可用于人眼像差哈特曼夏克测量仪的自动离焦补偿方法[J]. 光学学报, 2010, 30(11): 3082-3089.

    Bao Hua, Rao Changhui, Zhang Yudong, et al. An automatic defocus compensation method for human eye Hartmann-Shark wave-front aberrometer[J]. Acta Optica Sinica, 2010, 30(11): 3082-3089.

[5] 解洪升, 杨乐宝, 李大禹, 等. 人眼色差对夏克-哈特曼波前探测器的影响[J]. 激光与光电子学进展, 2015, 52(3), 030801.

    Xie Hongsheng, Yang Lebao, Li Dayu, et al. Influence of chromatic aberration on Shack-Hartmann wavefront sensor[J]. Laser & Optoelectronics Progress, 2015, 52(3), 030801.

[6] Zhu X, Hu S, Zhao L. Wafer focusing measurement of optical lithography system based on Hartmann-Shack wavefront testing[J]. Opt Lasers Eng, 2015, 66: 128-131.

[7] Augustin M, Müllerpfeiffer S, Falkenstrfer O. Experience using a double pass Shack-Hartmann set-upon a DUV high NA high performance lens[C]. SPIE, 2008, 7102: 71020P.

[8] 卢增雄, 齐月静, 齐威, 等. 纳米精度波像差检测随机点源阵列照明优化分析[J]. 光学学报, 2015, 35(6): 0612007.

    Lu Zengxiong, Qi Yuejing, Qi Wei, et al. Optimized analysis of random point array illumination source for nanometer accuracy wavefront error testing[J]. Acta Optica Sinica, 2015, 35(6): 0612007.

[9] Thomas S, Fusco T, Tokovinin A, et al. Comparison of centroid computation algorithms in a Shack-Hartmann sensor[J]. Mon Not R Astron Soc, 2006, 371(1): 323-336.

[10] 李晶, 巩岩, 呼新荣, 等. 哈特曼夏克波前传感器的高精度质心探测方法[J]. 中国激光, 2014, 41(3): 0316002.

    Li Jing, Gong Yan, Hu Xinrong, et al. A high-precision centroid detecting method for Hartmann-Shack wavefront sensor[J]. Chinese J Lasers, 2014, 41(3): 0316002.

[11] Wang J, Li Y. Comparison of wavefront reconstruction with modal method and zonal method for the inspection of catadioptric projection optics using Hartmann wavefront sensor[C]. SPIE, 2011, 8197: 81970A.

[12] Clare R M, Lane R G. Comparison of wavefront sensing using subdivision at the aperture and focal planes[J]. Palmerston North, 2003: 187-192.

[13] Neal D R, Copland J, Neal D. Shack-Hartmann wavefront sensor precision and accuracy[C]. SPIE, 2002, 4779: 148-160.

[14] Pfund J, Lindlein N, Schwider J. Misalignment effects of the Shack-Hartmann sensor[J]. Appl Opt, 1998, 37(1): 22-27.

[15] 王艳萍, 王茜蒨, 马冲. 哈特曼波前分析仪校准方法研究[J]. 中国激光, 2015, 42(1): 0108003.

    Wang Yanping, Wang Qianqian, Ma Chong. Study on Hartmann wavefront analyzer calibration method[J]. Chinese J Lasers, 2015, 42(1): 0108003.

[16] Alexander C, Uwe S, Fritz R, et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts[J]. Appl Opt, 2005, 44(30): 6419-6425.

[17] Sommargren G E. Phase shifting diffraction interferometry for measuring extreme ultraviolet optics[J]. OSA Trends in Optics and Photonics, 1996, 4: 108-112.

[18] Baker K L, Moallem M M. Iteratively weighted centroiding for Shack-Hartmann wave-front sensors[J]. Opt Express, 2007, 15(8): 5147-5159.

孟庆宾, 齐月静, 卢增雄, 苏佳妮, 高斐. 环境温度变化对夏克-哈特曼波前传感器测量精度影响分析[J]. 中国激光, 2016, 43(8): 0810001. Meng Qingbin, Qi Yuejing, Lu Zengxiong, Su Jiani, Gao Fei. Analysis of Effect of Ambient Temperature Variation on Measurement Accuracy of Shack-Hartmann Wavefront Sensor[J]. Chinese Journal of Lasers, 2016, 43(8): 0810001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!