强激光与粒子束, 2010, 22 (12): 2989, 网络出版: 2011-01-05  

放电等离子烧结制备纳米Ni块体材料

Fabrication of bulk nanocrystalline Ni by spark plasma sintering
作者单位
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 四川大学 材料科学与工程学院, 成都 610065
摘要
采用自悬浮定向流法制备纳米Ni粉体, 利用放电等离子烧结技术制备出了直径10 mm、厚2 mm, 致密度为96.8 %, 显微硬度为4.17 GPa的纳米块体材料。用X射线衍射仪、扫描电子显微镜和显微硬度计分析了烧结块体样品的相组成、晶粒尺寸、微观形貌和显微硬度。研究表明:随烧结温度的升高, 块体样品的致密度和晶粒尺寸增大, 当烧结温度为650 ℃时, 致密度最高, 晶粒尺寸为44.8 nm;显微硬度随烧结温度的增高先增大后减小, 当烧结温度为550 ℃时, 显微硬度最大为4.33 GPa;较高烧结温度下, 断口微观形貌的纳米级韧窝出现, 显示了韧性断裂的特征。
Abstract
Ni nano-particles were prepared by flow-levitation method. And then, bulk nanocrystalline Ni samples, 10 mm in diameter and 2 mm in height with a relative density of 96.8 % and a microhardness of 4.17 GPa, were fabricated by spark plasma sintering using the nano-particles. The phase composition, grain size, microstructure and microhardness of the bulk samples were characterized by X-ray diffractometer, scanning electron microscope, and Vickers microhardness tester, respectively. The results indicate that the relative density and grain size increase with increasing sintering temperature. The optimal relative density has been obtained at the sintering temperature of 650 ℃, at which the average grain size is 44.8 nm. The microhardness first increases and then decreases with increasing sintering temperature. Its optimal value is 4.33 GPa obtained at the sintering temperature of 550 ℃. When the sintering temperature is high, the appearance of nano-dimples in fractography reveals the existence of ductile fracture morphology.
参考文献

[1] Gleiter H. Nanocrystalline materials[J].Prog Mater Sci,1989,33:223-315.

[2] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J].Science,2000,287:1463-1466.

[3] Swygenhoven H V. Grain boundaries and dislocations[J].Science,2002,296:66-67.

[4] 楚广, 唐永建, 罗江山, 等. ICF物理实验用纳米Cu块体靶材的制备研究[J]. 强激光与粒子束,2005,17(12):1829-1834.(Chu Guang, Tang Yongjian, Luo Jiangshan, et al. Preparation synthesis of nanocrystalline copper target material for ICF experiments.High Power Laser and Particle Beams,2005,17(12):1829-1834)

[5] 楚广, 刘伟, 罗江山, 等. 影响纳米Cu固体材料性能的工艺参数研究[J]. 强激光与粒子束, 2005,17(11):103-106.(Chu Guang, Liu Wei, Luo Jiangshan, et al. Effects of processing parameters on properties of nanocrystalline Cu.High Power Laser and Particle Beams,2005,17(11):103-106)

[6] Kim J C, Moon I H, Ryu S S. Nanostructural characteristics and sintering behavior of W-Cu composite powder prepared by mechanical alloying[J].J Advan Mater,1999,31(4):37-44.

[7] Sun X K, Cong H T, Sun M, et al. Preparation and mechanical properties of highly densified nanocrystalline Al[J].Metal Mater Trans A,2000,31(3):1017-1024.

[8] Liu X D , Wang J T , Ding B Z. Preparation and properties of nanocrystalline (Fe0.99Mo0.01)78Si9B13 alloy[J].Scrip Metal Mater,1993,28:59-64.

[9] Maeda Y, Mizukoshi Y, Nagaya Y. Application of ultrasound for the preparation of nanosized materials[J].Ceramic of Japanese,2000,35(7):543-546.

[10] Husseinm Z B, Ming C Y, Zainal Z. Microwave-assisted synthesis of Zn-Al-layered double hydroxide-sodium dodecyl sulfate nanocompo-sites[J].J Mater Sci Lett,2000,19(10):879-883.

[11] Mamedov V. Spark plasma sintering as advanced PM sintering method[J].Powder Metal,2002,45(4):322-328.

[12] 庾正伟, 刘 颖, 李 军, 等. 放电等离子烧结制备FeSiB块体非晶合金[J]. 稀有金属材料与工程, 2009,38(Z1):44-47.(Yu Zhengwei, Liu Ying, Li Jun, et al. Fabrication of FeSiB bulk metallic glasses by spark plasma sintering.Rare Metal Materials and Engineering,2009,38(Z1):44-47)

[13] 韦建军, 唐永建, 吴卫东, 等. 自悬浮定向流技术中铜纳米微粒的粒度控制研究[J]. 强激光与粒子束, 2003,15(9):869-872.(Wei Jianjun, Tang Yongjian, Wu Weidong, et al. Preparation and granularity control of nanosized copper particles by flow-levitation method.High Power Laser and Particle Beams,2003,15(9):869-872)

[14] 唐永建, 韦建军, 李朝阳, 等. 自悬浮定向流纳米金属粉末制备的理论模拟[J]. 物理学报, 2003,52(9):2331-2336.(Tang Yongjian, Wei Jianjun, Li Chaoyang, et al. Theoretical simulations of preparation of nanometal particles by flow-levitation method.Acta Physica Sinica,2003,52(9):2331-2336)

[15] 吴栋, 韦建军, 唐永建, 等. 物理掺杂用纳米Fe粉的制备与结构表征[J]. 强激光与粒子束, 2008,20(2):244-246.(Wu Dong, Wei Jianjun, Tang Yongjian, et al. Preparation and characterization of Fe nanoparticles for physical doping.High Power Laser and Particle Beams,2008,20(2):244-246)

[16] 楚广, 刘伟, 唐永建. 用真空温压技术制备纳米金属铜块体材料[J]. 中南大学学报, 2007,38(5):873-879.(Chu Guang, Liu Wei, Tang Yongjian. Preparation of nanocrystalline metallic copper with vacuum warm-pressing technique.Journal of Central South University,2007,38(5):873-879)

[17] Nieman G W, Weertman J R, Siegle R W. Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation[J].Scrip Metal Mater, 1989,23(12): 2013-2018.

[18] 宫凯, 黄因慧, 田宗军, 等. 块体多孔金属镍的逐层扫描喷射电沉积制备[J]. 材料工程, 2009,(8):63-67.(Gong Kai, Huang Yinhui, Tian Zongjun, et al. Research on technological process of bulk porous nickel prepared by scanning jet electrodeposits. Materials Engineering,2009,(8):63- 67)

[19] Qin X Y, Cheong S H, Lee J S. Tensile behavior of nanocrystalline Ni-Fe alloy[J].Mater Sci Eng A,2003,363:62-66.

庾正伟, 罗江山, 雷海乐, 刘颖, 韩尚君, 吴卫东, 唐永建. 放电等离子烧结制备纳米Ni块体材料[J]. 强激光与粒子束, 2010, 22(12): 2989. Yu Zhengwei, Luo Jiangshan, Lei Haile, Liu Ying, Han Shangjun, Wu Weidong, Tang Yongjian. Fabrication of bulk nanocrystalline Ni by spark plasma sintering[J]. High Power Laser and Particle Beams, 2010, 22(12): 2989.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!