中国激光, 2013, 40 (2): 0202005, 网络出版: 2013-01-08   

基于单壁碳纳米管的波长可切换被动锁模光纤激光器 下载: 578次

Wavelength Switchable Passive Mode-Locking Fiber Laser Based on Single-Wall Carbon Nanotube
作者单位
1 天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
2 镇江船艇学院指挥系, 江苏 镇江 212003
摘要
报道了一种基于单壁碳纳米管可饱和吸收体、工作波长可切换的被动锁模光纤激光器。利用可饱和吸收体薄膜厚度调节腔内损耗,不仅实现了基频被动锁模脉冲序列的稳定输出,还有效控制了掺铒光纤激光器的增益谱线。实验表明,当腔内可饱和吸收体薄膜较薄或者较厚时,激光器可以分别产生中心波长为1545 nm和1562 nm的脉冲;当腔内可饱和吸收体薄膜厚度介于较薄和较厚之间的适当值时,仔细调整偏振控制器,可以实现激光器在这两个中心波长之间相互切换的稳定锁模运转,在切换的过程中还可观察到这两个中心波长同时出现的锁模现象。
Abstract
A passively mode-locked fiber laser, whose operating wavelength can be switched based on the single-wall carbon nanotube saturable absorber (SWCNT-SA), is demonstrated. By adjusting the thickness of saturable absorber film to change the intracavity loss, not only stable mode-locked output is obtained, but also the gain profile of the erbium-doped fiber laser is effectively controlled. The experimental results show that the lasers can generate mode-locked pulses with the central wavelength of 1545 nm and 1562 nm, in the thinner and thicker SWCNT-SA, respectively. Additionally if the thickness of SWCNT-SA is appropriately controlled between the thinner and thicker ones, the laser can generate pulses both with central wavelength of 1545 nm and 1562 nm, and the operating wavelength can be switched from one to the other by carefully adjusting the polarization controller. In the process of wavelength switching, the phenomenon of mode-locking is also observed when the two central operating wavelengths simultaneously appear.
参考文献

[1] Y. C. Chen, N. R. Raravikar, L. S. Schadler et al.. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm[J]. Appl. Phys. Lett., 2002, 81(6): 975~977

[2] H. Kataura, Y. Kumazawa, Y. Maniwa et al.. Optical properties of single wall carbon nanotubes[J]. Synth. Met., 1999, 103(3): 2555~2558

[3] C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers. Ultrafast Raman laser mode-locked by nanotubes[J]. Opt. Lett., 2011, 36(20): 3996~3998

[4] S. J. Chang, H. I. Ju, H. Y. Sang et al.. Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes[J]. Opt. Express, 2011, 19(20): 19775~19780

[5] J. Liu, Y. G. Wang, Z. S. Qu et al.. 2 μm passive Q-switched mode-locked Tm3+YAP laser with single-walled carbon nanotube absorber[J]. Opt. & Laser Technol., 2012, 44(4): 960~962

[6] C. C. Liu, Y. G. Wang, J. Liu et al.. Ultrafast laser performance of Yb3+Sc2SiO5 crystal with a single-walled carbon nanotube absorber[J]. Opt. Commun., 2012, 285(6): 1352~1355

[7] H. F. Li, S. M. Zhang, J. Du et al.. Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber[J]. Opt. Commun., 2012, 285(6): 1347~1351

[8] M. Zhang, E. J. R. Kelleher, A. S. Pozharov et al.. Passive synchronization of all-fiber lasers through a common saturable absorber[J]. Opt. Lett., 2011, 36( 20): 3984~3986

[9] A. Martinez, K. M. Zhou, I. Bennion et al.. Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber[J]. Opt. Express, 2010, 18(11): 11008~11014

[10] 曲遵世, 马宝民, 刘杰. 基于碳纳米管的TmYAP 2 μm脉冲激光特性试验研究[J]. 中国激光, 2011, 38(11): 1102009

    Qu Zunshi, Ma Baomin, Liu Jie. Research on pulse laser characteristics for 2 μm TmYAP laser based on carbon nanotube absorber[J]. Chinese J. Lasers, 2011, 38(11): 1102009

[11] S. Yamashita, Y. Inoue, H. Yaguchi et al.. S-, C-, L-band picosecond fiber pulse sources using a broadband carbon-nanotube-based mode-locker[C]. In 2004 30th European Conference on Optical Communication, 2004. Th1.3.4

[12] S. Kivist, T. Hakulinen, A. Kaskela et al.. Carbon nanotube films for ultrafast broadband technology[J]. Opt. Express, 2009, 17(4): 2358~2363

[13] W. B. Cho, J. H. Yim, S. Y. Choi et al.. Ultra-broadband (>500 nm) single-walled carbon nanotube saturable absorber mode-locking of bulk solid-state lasers[C]. Advanced Solid-State Photonics, 2010. AWE4

[14] V. J. Matsas, T. P. Newson, D. J. Richardson et al.. Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation[J]. Electron. Lett., 1992, 28(15): 1391~1393

[15] Z. C. Luo, A. P. Luo, W. C. Xu et al.. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter[J]. IEEE Photon. J., 2010, 2(4): 571~577

[16] 张攀政, 范薇, 汪小超 等. 全光纤掺镱激光器实现锁模和多波长输出[J]. 中国激光, 2011, 38(3): 0302001

    Zhang Panzheng, Fan Wei, Wang Xiaochao et al.. Mode-locking and multiwavelength operation from all-fiber ytterbium doped laser[J]. Chinese J. Lasers, 2011, 38(3): 0302001

[17] 田振, 刘山亮, 张丙元 等. 石墨烯锁模掺铒光纤脉冲激光器的实验研究[J]. 中国激光, 2011, 38(3): 0302004

    Tian Zhen, Liu Shanliang, Zhang Bingyuan et al.. Graphene mode-locking Er3+ doped fiber pulse laser[J]. Chinese J. Lasers, 2011, 38(3): 0302004

[18] H. Zhang, D. Y. Tang, X. Wu et al.. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Opt. Express, 2009, 17(15): 12692~12697

[19] 汪光辉, 王志鹏, 陈宇 等. 基于石墨烯的被动锁模掺铒光纤孤子激光器[J]. 中国激光, 2012, 39(6): 0602003

    Wang Guanghui, Wang Zhiteng, Chen Yu et al.. Passively graphene mode-locked soliton erbium-doped fiber lasers[J]. Chinese J. Lasers, 2012, 39(6): 0602003

[20] R. Going, D. Popa, F. Torrisi et al.. 500 fs wideband tunable fiber laser mode-locked by nanotubes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44(6): 1078~1081

[21] Z. P. Sun, P. Daniel, H. Tawfique et al.. A stable, wideband tunable, near transform-limited, graphene-mode-locked[J]. Nano. Res., 2010, 3(9): 653~660

[22] W. B. Che, J. W. Kim, H. W. Lee et al.. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 125 μm[J]. Opt. Lett., 2011, 36( 20): 4089~4091

[23] H. Zhang, D. Y. Tang, L. M. Zhao et al.. Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion[J]. Laser Phys. Lett., 2010, 7(8): 591~596

[24] H. Zhang, D. Y. Tang, R. J. Knize et al.. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Appl. Phys. Lett., 96(11): 111112

[25] K. Kashiwagi, S. J. Yamashita, S. Y. Set. In-situ monitoring of optical deposition of carbon nanotubes onto fiber end[J]. Opt. Express, 2009, 17(7): 5711~5715

[26] P. C. Becker, N. A. Olsson, J. R. Simpson. Erbium-Doped Fiber Amplifiers: Fundamentals and Technology[M]. Verlag: Academic Press, 1999

[27] 朱攀, 桑梅, 王晓龙 等. 基于单壁碳纳米管可饱和吸收体的被动锁模光纤激光器研究[J]. 光电子·激光, 2012, 23(9): 1686~1690

    Zhu Pan, Sang Mei, Wang Xiaolong et al.. Passive mode-locking pulse fiber laser research based on single-walled carbon nanotube saturable absorber[J]. J. Optoelectronics·Laser, 2012, 23(9): 1686~1690

[28] 朱攀, 桑梅, 王晓龙 等. z扫描法测单壁碳纳米管薄膜非线性特性的研究[J]. 激光与光电子学进展, 2012, 49(9): 091202

    Zhu Pan, Sang Mei, Wang Xiaolong et al.. The research on nonlinear characteristics of SWCNT film by Z-Scan method measurement[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091202

[29] K. Jiang, S. G. Fu, P. Shum. Experimental observations of multiple solitons generation in a carbon-nanotube based passively mode-locked fiber laser[C]. International Conference on Communication and Mobile Computing, 2010, 2: 43~46

朱攀, 桑梅, 高杨, 王晓龙, 刘珂, 王俊龙, 杨天新. 基于单壁碳纳米管的波长可切换被动锁模光纤激光器[J]. 中国激光, 2013, 40(2): 0202005. Zhu Pan, Sang Mei, Gao Yang, Wang Xiaolong, Liu Ke, Wang Junlong, Yang Tianxin. Wavelength Switchable Passive Mode-Locking Fiber Laser Based on Single-Wall Carbon Nanotube[J]. Chinese Journal of Lasers, 2013, 40(2): 0202005.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!