Frontiers of Optoelectronics, 2018, 11 (4): 400–406, 网络出版: 2019-01-10  

Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes

Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes
作者单位
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 Sichuan Branch, China Unicom Network Communications Co., Ltd, Chengdu 610041, China
3 Wuhan Aroptics-Tech Co., LTD, Wuhan 430074, China
摘要
Abstract
Based on the newly proposed temperature dependent dead space model, the breakdown voltage and bandwidth of InP/InGaAs avalanche photodiode (APD) have been investigated in the temperature range from -50 ℃ to 100 ℃. It was demonstrated that our proposed model is consistent with the experimental results. Our work may provide a guidance to the design of APDs with controllably low temperature coefficient.
参考文献

[1] Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121

[2] Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Optics Express, 2009, 17(8): 6275–6282

[3] Wu G, Jian Y, Wu E, Zeng H. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Optics Express, 2009, 17(21): 18782–18787

[4] Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express, 2006, 14(21): 10043–10049

[5] Dixon A R, Dynes J F, Yuan Z L, Sharpe AW, Bennett A J, Shields A J. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters, 2009, 94(23): 231113-1–231113-3

[6] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. Journal of Cryptology, 1992, 5(1): 3–28

[7] Zhang J, Itzler M A, Zbinden H,Pan J W.Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science and Applications, 2015, 4 (5): e286-1–e286-13

[8] Hyun K S, Park C Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. Journal of Applied Physics, 1997, 81(2): 974–984

[9] Bandyopadhyay A, Jamal Deen M, Tarof L E, Clark W. A simplified approach to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699

[10] Xie J, Ng J S, Tan C H. An InGaAs/AlAsSb avalanche photodiode with a small temperature coefficient of breakdown. IEEE Photonics Journal, 2013, 5(4): 6800706

[11] Tan L J J, Ong D S G, Ng J S, Tan C H, Jones S K, Qian Y, David J P R. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE Journal of Quantum Electronics, 2010, 46(8): 1153–1157

[12] Xiang J, Zhao Y. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation. Optical Engineering (Redondo Beach, Calif.), 2014, 53(4): 046106-1–046106-7

[13] Zhao Y, He S. Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer. Optics Communications, 2006, 265(2): 476–480

[14] El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344

[15] Das N R, DeenMJ. On the frequency response of a resonant-cavityenhanced separate absorption, grading, charge, and multiplication avalanche photodiode. Journal of Applied Physics, 2002, 92(12): 7133–7145

[16] Okuto Y, Crowell C R. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(8): 3076–3081

[17] Chau H F, Pavlidis D. Physics based fitting and extrapolation method for measured impact ionization coefficients in III–V semiconductors. Journal of Applied Physics, 1992, 72(2): 531–538

[18] Zhao Y, Zhang D, Qin L, Tang Q, Wu R H, Liu J, Zhang Y, Zhang H, Yuan X, Liu W. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 2011, 19(9): 8546–8556

, , , , , , , , , , , , . Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Frontiers of Optoelectronics, 2018, 11(4): 400–406. Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Frontiers of Optoelectronics, 2018, 11(4): 400–406.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!