光子学报, 2017, 46 (4): 0411004, 网络出版: 2017-05-03  

频谱编码深度成像实验研究

Experimental Research on Depth-resolved Spectrally Encoded Imaging
作者单位
南京理工大学 电子工程与光电技术学院, 南京 210094
摘要
频谱编码显微镜是用衍射光栅和光谱分析装置来获得显微图像.样品上不同的位置被不同的波长照明, 通过对反射光光谱进行解码来得到空间信息.搭建了一个基于超连续光源和自制光谱仪的频谱编码显微成像系统, 其横向分辨率为1.72±0.13 μm(编码线方向)和1.26±0.08 μm(垂直于编码线方向), 测得不同横向位置处的轴向分辨率有差异.对离体猪肝组织不同部位进行了成像(可见血管、肝窦内皮细胞和肝细胞); 对鸡心组织以10 μm深度间隔进行成像, 测得不同深度处结构信息不一样.结果表明, 采用该频谱编码成像的方法能够进行高分辨的深度成像.
Abstract
Spectrally encoded imaging uses a diffraction grating and a spectrum analyzer setup to obtain microscopic images. The different position on the sample is illuminated by different wavelength. Then the reflection light is decoded to obtain spatial information. In this letter, a spectrally encoded microscopy is described which is based on a super luminescent diode source and a home-built spectrometer. By imaging a 1951 USAF resolution target, the measured lateral resolutions were found to be 1.72±0.13 μm and 1.26±0.08 μm in the spectral and its vertical directions, respectively. The axial resolutions along the different lateral positions were measured to be unequal. The images of excised swine liver tissue were obtained at different locations. The veins, liver sinusoidal endothelial cells and hepatocytes can be visualized. The Chicken heart tissue was imaged at 10 μm per step along the depth direction beneath the surface, the images indicated the difference in the structure features at different depths. The results demonstrate high resolution, depth-resolved imaging capability by this method.
参考文献

[1] TEARNEY G J, WEBB R H, BOUMA B E. Spectrally encoded confocal microscopy[J]. Optics Letters, 1998, 23(15): 1152-1154.

[2] YELIN D, BOUMA B E, IFTIMIA N, et al. Three-dimensional spectrally encoded imaging[J]. Optics Letters, 2003, 28(23): 2321-2323.

[3] BOUDOUX C, YUN S, OH W, et al. Rapid wavelength-swept spectrally encoded confocal microscopy[J]. Optics Express, 2005, 13(20): 8214-8221.

[4] YELIN D, RIZVI I, WHITE W M, et al. Three-dimensional miniature endoscopy[J]. Nature, 2006, 443(7113): 765-765.

[5] 廖九零,高万荣,方俏然. 频谱编码内窥成像技术[J]. 光学学报, 2014, 34(6): 611004.

    LIAO Jiu-ling, GAO Wan-rong, FANG Qiao-ran. Spectrally encoded endoscopic imaging[J]. Acta Optica Sinica, 2014, 34(6): 611004.

[6] YELIN D, BOUDOUX C, BOUMA B E, et al. Large area confocal microscopy[J]. Optics Letters, 2007, 32(9): 1102-1104.

[7] WILSON T, CARLINI A R. Size of the detector in confocal imaging systems[J]. Optics Letters, 1987, 12(4): 227-229.

[8] KANG D K, SUTER M J, BOUDOUX C, et al. Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy[J]. Gastrointestinal Endoscopy, 2010, 71(1): 35-43.

[9] KANG D K, YOO H, JILLELLA P, et al. Comprehensive volumetric confocal microscopy with adaptive focusing[J]. Biomedical Optics Express, 2011, 2(6): 1412-1422.

[10] KANG D K, CARRUTH R W, KIM M, et al. Endoscopic probe optics for spectrally encoded confocal microscopy[J]. Biomedical Optics Express, 2013, 4(10): 1925-1936.

[11] GOLAN L, YELIN D. Flow cytometry using spectrally encoded confocal microscopy[J]. Optics Letters, 2010, 35(13): 2218-2220.

[12] ZEIDAN A, YELIN D. Reflectance confocal microscopy of red blood cells: simulation and experiment[J]. Biomedical Optics Express, 2015, 6(11): 4335-4343.

[13] ELHANAN T, YELIN D. Measuring blood velocity using correlative spectrally encoded flow cytometry[J]. Optics Letters, 2014, 39(15): 4424-4426.

[14] KIM S, HWANG J, HEO J, et al. Spectrally encoded slit confocal microscopy using a wavelength-swept laser[J]. Journal of Biomedical Optics, 2015, 20(3): 036016-036016.

[15] HWANG J, KIM S, HEO J, et al. Frequency-and spectrally-encoded confocal microscopy[J]. Optics Express, 2015, 23(5): 5809-5821.

[16] CORLE T R, CHOU C H, KINO G S. Depth response of confocal optical microscopes[J]. Optics Letters, 1986, 11(12): 770-772.

[17] PAWLEY J. Handbook of biological confocal microscopy[M]. New York: Springer, 2006: 209.

[18] 李红福, 解慧明, 张琛,等. 高数值孔径系统多重初级像差对高斯光束的影响[J]. 光子学报, 2015, 44(9): 66-72.

    LI Hong-fu, JIE Hui-ming, ZHANG Chen, et al. Studying the combined effects of primary aberrations on gaussian beam in high NA focusing system[J]. Acta Photonica Sinica, 2015, 44(9)66-72.

廖九零, 高万荣. 频谱编码深度成像实验研究[J]. 光子学报, 2017, 46(4): 0411004. LIAO Jiu-ling, GAO Wan-rong. Experimental Research on Depth-resolved Spectrally Encoded Imaging[J]. ACTA PHOTONICA SINICA, 2017, 46(4): 0411004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!