光电工程, 2016, 43 (5): 27, 网络出版: 2016-06-06  

高光谱无损检测辣椒粉中苏丹红浓度

Non-destructive Detection of the Concentration of Sudan Red in Chili Powders Based on Hyper-spectral
周瑶 1,2,*李柏承 1,2赵曼彤 1,2王琦 1,2张大伟 1,2
作者单位
1 上海理工大学上海市现代光学系统重点实验室, 上海 200093
2 上海理工大学教育部光学仪器与系统工程中心, 上海 200093
摘要
为无损检测辣椒粉中苏丹红一号浓度 (C), 本文运用高光谱成像检测技术得到 120个含有不同 C的辣椒粉高光谱图像, 其中 60个作为校正集剩余为预测集, 采用连续投影算法(SPA)从校正集的海量光谱数据中优选出 45个特征波长, 再通过偏最小二乘回归法 (PLSR)、多元线性回归法 (MLR)和主成分回归法 (PCR)建立预测模型。结果表明, MLR模型较优, 其校正集相关系数为 0.998, 校正均方根误差为 0.737 3 μg/ml, 预测集相关系数为 0.987, 预测均方根误差为 1.921 3 μg/ml, 该方法可以实现辣椒粉中 C的无损检测。
Abstract
To detect the concentration of Sudan red No. 1 (C) in chili powders non-destructively, the hyper-spectral imaging technique was used to extract 120 chili powder images that had different C, including 60 for calibration set and rest for prediction set. Successive Projections Algorithm (SPA) was used to extract 45 effective wavelengths from large amount of spectra data in calibration set. Partial Least Squares Regression (PLSR), Multiple Linear Regression (MLR) and Principal Component Regression (PCR) were applied to set prediction models. As a result, better model to detect the C in chili powders was based on MLR. The Correlation Coefficient Calibration (Rc) and Root Mean Square Error of Calibration (ERMSC) were 0.998 and 0.737 3 μg/ml. The Correlation Coefficient Prediction (Rp) and Root Mean Square Error of Prediction (ERMSP) was 0.987 and 1.921 3 μg/ml. This demonstrates that the method can be successfully used for detecting the C in chili powders non-destructively.
参考文献

[1] 马凤兰, 蒋启东. 辣椒粉营养分析[J].吉林蔬菜, 2010, 3(3): 15.

    MA Fenglan, JIANG Qidong. The nutrition analysis of chili powders[J]. Jilin Vegetable, 2010, 3(3): 15.

[2] 黄露. 超声波萃取辣椒粉中苏丹红类染色剂的工艺研究[J].闽江学院学报, 2013, 34(2): 105-107.

    HUANG Lu. Study on the ultrasonic extraction of Sudan dyes from chili powders[J]. Journal of Minjiang University, 2013, 34(2): 105-107.

[3] 张苗. 苏丹红危险性评估报告亮相[J].中国社会保障, 2005(05): 46.

    ZHANG Miao. The risk assessment report of Sudan red[J]. China Social Security, 2005(05): 46.

[4] STIBOROV M. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers[J]. Cancer Letters(S0304-3835), 2005, 220(2): 145–154.

[5] 季宇彬, 汲晨锋, 高世勇, 等. 苏丹红 Ⅰ、Ⅲ和Ⅳ对 HepG-2细胞和 SGC-7901细胞增值的影响[J].环境科学, 2006, 27(6): 1201-1207.

    JI Yubin, JI Chenfeng, GAO Shiyong, et al. Effect of Sudan I、Ⅲ and Ⅳ on proliferation of HepG -2 and SGC-7901[J]. Environmental Science, 2006, 27(6): 1201-1207.

[6] 王洋, 彭琨, 王胜. 食品中苏丹红一号的检测方法[J].粮油食品科技, 2005, 13(4): 43-44.

    WANG Yang, PENG Kun, WANG Sheng. The detection methods of Sudan red in food[J]. Oils and Foods, 2005, 13(4): 43-44.

[7] LEE WH, KIM M S, LEE H, et al. Hyperspectral near-infrared imaging for the detection of physical damages of pear[J]. Journal of Food Engineering(S0260-8774), 2014, 130(3): 1–7.

[8] 杜一平, 黄子夏, 方娟娟, 等. 辣椒粉中苏丹红的近红外光谱鉴别和含量测定方法研究[C]// 全国第二届近红外光谱学术会, 长沙, 中国, 11月 1日, 2008.

    DU Yiping, HUANG Zixia, FANG Juanjuan, et al. Determination and Discrimination of Sudan red in Paprika by Near-infrared Spectroscopy[C]//The Second National Near Infrared Spectrum Academic Conference, Changsha, China, Nov 1, 2008.

[9] Haughey S A, Galvin-King P, Ho Y C, et al. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye[J]. Food Control(S0956-7135), 2015, 48: 75–83.

[10] ROGGO Y, EDMOND A, CHALUS P, et al. Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms[J]. Analytica Chimica Acta(S0003-2670), 2005, 535: 79–87.

[11] 冯海亮, 潘竞文, 黄鸿. 一种改进的邻域保持嵌入高光谱影像分类方法[J].光电工程, 2014, 41(9): 45-50.

    FENG Hailiang, PAN Jingwen, HUANG Hong. An Improved Neighborhood Preserving Embedding Method Used in Hyperspectral Image Classification[J]. Opto-Electronic Engineering, 2014, 41(9): 45-50.

[12] 李吉明, 贾森, 彭艳斌. 基于光谱特征和纹理特征协同学习的高光谱图像数据分类[J].光电工程, 2012, 39(11): 88-94.

    LI Jiming, JIA Sen, PENG Yanbing. Hyperspectral Data Classification with Spectral and Texture Features by Co—training Algorithm[J]. Opto-Electronic Engineering, 2012, 39(11): 88-94.

[13] 李伟星, 赵兴祥, 刘刚, 等. 辣椒的傅里叶变换红外光谱研究[J].中国激光, 2014, 41(s1): s115001.

    LI Weixing, ZHAO Xingxiang, LIU Gang, et al. Study of capsicum frutescens L. by fourier transform infrared spectroscopy[J]. Chinese Journal of Lasers, 2014, 41(s1): s115001.

[14] 陈全胜, 赵杰文, 蔡健荣, 等. 利用高光谱图像技术评判茶叶的质量等级[J].光学学报, 2008, 28(4): 669-674.

    CHEN Quansheng, ZHAO Jiewen, CAI Jianrong, et al. Estimation of tea quality level using hyperspectral imaging technology[J]. Acta Optica Sinaca, 2008, 28(4): 669-674.

[15] 何俊, 尚丽平, 邓琥, 等. 250 nm激光诱导土壤中多环芳烃的荧光检测系统[J].光电工程, 2014, 41(9): 51-55.

    HE Jun, SHANG Liping, DENG Hu, et al. Detection System of 250 am Laser Induce Fluorescence of Polycyclic Aromatic Hydrocarbons in Soil[J]. Opto-Electronic Engineering, 2014, 41(9): 51-55.

[16] 薛龙, 黎静, 刘木华. 基于高光谱图像技术的水果表面农药残留检测试验研究[J].光学学报, 2008, 28(12): 2277-2280.

    XUE Long, LI Jing, LIU Muhua. Detecting pesticide residue on navel orange surface by using hyperspectral imaging[J]. Acta Optica Sinaca, 2008, 28(12): 2277-2280.

[17] 陈全胜, 张燕华, 万新民, 等. 基于高光谱成像技术的猪肉嫩度检测研究[J].光学学报, 2010, 30(9): 2602-2607.

    CHEN Quansheng, ZHANG Yanhua, WAN Xinmin, et al. Study on detection of pork tenderness using hyperspectral imaging technique[J]. Acta Optica Sinaca, 2010, 30(9): 2602-2607.

[18] 李锋霞, 马本学, 何青海, 等. 哈密瓜坚实度的高光谱无损检测技术[J].光子学报, 2013, 42(5): 592-595.

    LI Fengxia, MA Benxue, HE Qinghai, et al. Non-destructive detection of firmness of hami melon by hyperspectral imaging technique[J]. Acta Photonica Sinica, 2013, 42(5): 592-595.

[19] WU D, NIE P, CUELLO J, et al. Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of common adulterants in Spirulina powder[J]. Journal of Food Engineering(S0260-8774), 2011, 102(3): 278-286.

[20] ARA JO M C U, SALDANHA T C B, GALV O R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems(S0169-7439), 2001, 57(2): 65-73.

[21] Polder G, Young I T. Calibration and characterisation of imaging spectrographs[J]. Journal of Near Infrared Spectroscopy (S0967-0335), 2003, 11(3): 193-210.

[22] Sarkar A, Karki V, Aggarwal S K, et al. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy(S0584-8547), 2015, 108: 8–14.

[23] 王慧文, 孟洁. 多元线性回归的预测建模方法[J].北京航空航天大学学报, 2007, 33(4): 500-504.

    WANG Huiwen, MENG Jie. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 500-504.

[24] 舒晓慧, 刘建平. 利用主成分回归法处理多重共线性的若干问题[J].统计与决策, 2004(10): 25-26.

    SHU Xiaohui, LIU Jianping. Some Problems of Multicollinearity Based on Principal Component Regression Method[J]. Statistics and Decision, 2004(10): 25-26.

[25] 褚小立, 袁洪福, 陆婉珍. 紫外-可见光谱 -偏最小二乘法测定渣油四组分含量[J].分析化学, 2000, 28(12): 1457-1461.

    CHU Xiaoli, YUAN Hongfu, LU Wanzhen. Determining four component contents in residues by partial least squares-ultraviolet-visible spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2000, 28(12): 1457-1461.

[26] 褚小立. 化学计量学方法与分子光谱分析技术[M].北京: 化学工业出版社, 2011: 259-268.

    CHU Xiaoli. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and its Applications[M]. Beijing: Chemical Industry Press, 2011: 259-268.

周瑶, 李柏承, 赵曼彤, 王琦, 张大伟. 高光谱无损检测辣椒粉中苏丹红浓度[J]. 光电工程, 2016, 43(5): 27. ZHOU Yao, LI Baicheng, ZHAO Mantong, WANG Qi, ZHANG Dawei. Non-destructive Detection of the Concentration of Sudan Red in Chili Powders Based on Hyper-spectral[J]. Opto-Electronic Engineering, 2016, 43(5): 27.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!