应用激光, 2019, 39 (1): 35, 网络出版: 2019-04-16   

27SiMn钢表面激光熔覆304不锈钢数值模拟及实验研究

Numerical Simulation and Experimental Study of Laser Cladding 304 Stainless Steel on 27SiMn Steel
作者单位
西安科技大学机械工程学院, 陕西 西安 710054
摘要
为了研究激光功率对激光熔覆304不锈钢组织和性能的影响, 利用ANSYS有限元分析软件对不同激光功率下的激光熔覆304不锈钢过程进行数值模拟, 分析了不同激光功率下的温度场, 得到了距离熔覆层表面1 mm处的某点温度-时间曲线。在27SiMn钢表面进行了单道激光熔覆304不锈钢实验, 并分析了显微组织、宏观形貌和显微硬度。结果表明, 数值模拟出温度场熔池宽度、深度和面积随激光功率的增大而增大; 该点温度时间曲线呈锯齿状变化, 且最高温度随激光功率的不断增大而增大; 在不同激光功率下熔覆层与基体之间均实现了良好的冶金结合; 激光功率在2 100~2 500 W范围内, 随激光功率的增加, 熔覆层的晶粒变得细小, 组织更为致密; 激光功率在2 700 W时, 熔覆层晶粒比功率为2 500 W的粗大; 显微硬度曲线均呈现出“低—高—低”的台阶状分布趋势。
Abstract
In order to study the effect of laser power on the microstructure and properties of laser cladding 304 stainless steel, the process of laser cladding 304 stainless steel at different laser power was simulated by using ANSYS software. The temperature field under different laser powers was analyzed, and a temperature-time curve at a point 1 mm from the surface of the cladding layer was obtained. A single laser cladding 304 stainless steel experiment was carried out on the surface of 27SiMn steel, and the microstructure, macroscopic morphology and microhardness were analyzed. The results show that the width, depth and area of the temperature field by numerical simulation increase with the increase of laser power. The temperature time cure of this point changes in a sawtooth shape, and the maximum temperature increases with the increase of laser power. Under different laser power, good metallurgical bonding is achieved between the cladding layer and the substrate. The laser power is in the range of 2 100 W to 2 500 W. With the increase of laser power, the grains of the cladding layer become finer and the structure is more compact. When the laser power is 2 700 W, the cladding grain is larger than the power of 2 500 W. The microhardness curves show a step-shaped distribution trend of "low-high-low".
参考文献

[1] 刘旭.纳米晶304不锈钢力学性能的研究[D].沈阳: 东北大学, 2013.

    LIU XU.Study on mechanical properties of nanocrystalline 304 stainless steel[D].Shenyang: Northeastern University, 2013.

[2] 仇卫华, 刘长毅.基于ANSYS的激光熔覆的数值模拟[J].机械制造与自动化, 2008(1): 13-15.

    QIU WEIHUA, LIU CHANGYI.Numerical simulation of laser cladding based on ANSYS [J].Mechanical Manufacturing and Automation, 2008(1): 13-15.

[3] 徐鹏, 董梁, 鞠恒, 等.激光熔覆304不锈钢涂层的组织及耐蚀性[J].材料热处理学报, 2014, 35(S1): 221-225.

    XU PENG, DONG LIANG, JU HENG, et al.Microstructure and corrosion resistance of 304 stainless steel coating by laser cladding[J].Transactions of Materials and Heat Treatment, 2014, 35(S1): 221-225.

[4] 王围, 陈恽, 邹元平, 等.不锈钢熔覆技术再制造修复液压油缸杆件的探讨[J].现代制造技术与装备, 2013(50): 46+52.

    WANG WEI, CHEN YUN, ZOU YUANPING, et al.Stainless steel cladding technology and manufacturing repair hydraulic oil cylinder rods discussion[J].Modern Manufacturing Technology and Equipment, 2013(50): 46+52.

[5] 柴蓉霞, 李凯凯, 郭卫, 等.热处理工艺对304不锈钢熔覆层组织和性能的影响[J].激光与光电子学进展, 2018, 55(5): 279-285.

    CHAI RONGXIA, LI KAIKAI, GUOWEI, et al.Effects of heat treatment on the structure and properties of 304 stainless steel cladding[J].Laser & Optoelectronics Progress, 2018, 55(5): 279-285.

[6] 高美娜, 王续跃, 徐文骥, 等.不锈钢-碳钢层合板激光熔覆制备方法试验研究[J].激光与光电子学进展, 2014, 51(2): 120-127.

    GAO MEINA, WANG XUYUE, XU WENJI, et al.Experimental study on the preparation of laser cladding for stainless steel-carbon steel laminates[J].Laser & Optoelectronics Progress, 2014, 51(2): 120-127.

[7] 昝少平, 焦俊科, 张文武.316L不锈钢粉末激光熔覆工艺研究[J].激光与光电子学进展, 2016, 53(6): 223-230.

    ZAN SHAOPING, JIAO JUNKE, ZHANG WENWU.Study on laser cladding process of 316L stainless steel powder[J].Laser & Optoelectronics Progress, 2016, 53(6): 223-230.

[8] 陈列, 谢沛霖.双向扫描激光熔覆止裂机理及试验分析[J].焊接学报, 2011, 32(2): 65-68.

    CHEN LIE, XIE PEILIN.Bidirectional scanning laser cladding crack arrest mechanism and experimental analysis[J].Transactions of The China Welding Institution, 2011, 32(2): 65-68.

[9] 欧阳智勇, 卢国杰, 郭亮, 等.激光焊接温度场模拟分析及熔池深度的计算[J].应用激光, 2018, 38(1): 52-57.

    OUYANG ZHIYONG, LUGUOJIE, GUOLIANG, et al.Simulation analysis of laser welding temperature field and calculation of molten pool depth[J].Applied Laser, 2018, 38(1): 52-57.

[10] PAREKH R, BUDDU R K, PATEL R I.Multiphysics simulation of laser cladding process to study the effect of process parameters on clad geometry[J].Procedia Technology, 2016(23): 529-536.

[11] 张平, 马琳, 赵军军, 等.激光熔覆数值模拟过程中的热源模型[J].中国表面工程, 2006(S1): 161-164.

    ZHANG PING, MA LIN, ZHAO JUNJUN, et al.Heat source model in numerical simulation of laser cladding[J].China Surface Engineering, 2006(S1): 161-164.

[12] 李养良, 白小波, 王利, 等.激光熔覆工艺参数对熔覆层组织和性能的影响[J].热加工工艺, 2009, 38(12): 101-103.

    LI YANGLIANG, BAI XIAOBO, WANG LI, et al.Effects of laser cladding process parameters on the structure and properties of cladding layers[J].Hot Working Technology, 2009, 38(12): 101-103.

[13] 张雪.激光功率对Ni基-WC熔覆层组织与性能的影响[D].鞍山: 辽宁科技大学, 2014.

    ZHANG XUE.Effect of laser power on microstructure and properties of Ni-based-WC cladding layer[D].Anshan: Liaoning University of Science and Technology, 2014.

[14] 杨丹, 宁玉恒, 赵宇光, 等.工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J].材料导报, 2017, 31(24): 133-140.

    YANG DAN, NING YUHENG, ZHAO YUGUANG, et al.Effects of process parameters on microstructure, wear resistance and corrosion resistance of laser cladding Ni-based alloy coating on 304 stainless steel surface[J].Materials Review, 2017, 31(24): 133-140.

郭卫, 张亚普, 柴蓉霞, 郭博洋. 27SiMn钢表面激光熔覆304不锈钢数值模拟及实验研究[J]. 应用激光, 2019, 39(1): 35. Guo Wei, Zhang Yapu, Chai Rongxia, Guo Boyang. Numerical Simulation and Experimental Study of Laser Cladding 304 Stainless Steel on 27SiMn Steel[J]. APPLIED LASER, 2019, 39(1): 35.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!