激光与光电子学进展, 2017, 54 (8): 080101, 网络出版: 2017-08-02  

基于塞曼原子吸收法的燃煤电厂汞排放监测研究 下载: 573次

Monitoring of Mercury Emission in Coal-Fired Power Plant Based on Zeeman Atomic Absorption Spectrometry
作者单位
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
摘要
利用横向塞曼效应技术对烟气中的二氧化硫(SO2)、二氧化氮(NO2)等干扰气体进行背景校正。采用基于塞曼效应的汞监测系统测量得到烟气经过湿法脱硫(WFGD)处理系统前后烟气中元素汞(Hg0)的平均质量浓度分别为0.36 μg·m-3和11.08 μg·m-3, 脱硫系统处理后烟气中Hg0浓度显著升高。经分析, 烟气中约99%的SO2被脱硫浆液吸收, 生成足量亚硫酸盐, 亚硫酸盐与Hg2+发生还原反应释放出Hg0;浆液pH值的变化加速Hg2+还原反应并释放Hg0。利用WFGD系统协同脱汞可能导致烟气Hg0排放浓度升高。Hg0排放浓度与烟气中其他成分的浓度均具有一定的相关性, 这与理论分析一致, 表明横向塞曼原子吸收法可以有效去除SO2、NOx等气体的干扰, 验证了应用横向塞曼原子吸收法检测烟气汞含量的准确性与可行性。
Abstract
Background noise from SO2, NO2 and other interfering gases in flue gas is corrected by the transverse Zeeman effect. The mercury concentration in flue gas is determined by Zeeman atomic absorption spectrometry. The average concentrations of element Hg (Hg0) in flue gas before and after wet flue gas desulfurization (WFGD) are 0.36 μg·m-3 and 11.08 μg·m-3. The concentration of Hg0 in flue gas increases significantly after desulfurization system. The monitoring results show that about 99% of SO2 in the flue gas is absorbed by the desulfurization slurry, and produces enough sulphite which reacts chemically with Hg2+ to release Hg0. The change of pH value in the desulfurization slurry also accelerates reduction reaction and release of Hg0. The use of WFGD system to remove mercury can lead to the increase of element mercury concentration. The monitoring results of element mercury have certain correlations with concentrations of other components in the flue gas, which is consistent with the theoretical analysis. The monitoring results show that transverse Zeeman atomic absorption spectrometry can effectively overcome interference caused by SO2, NOx and other gases. The results confirm the accuracy and feasibility of transverse Zeeman atomic absorption spectrometry applied in the detection of mercury content in flue gas.
参考文献

[1] Hansen J C, Danscher G. Organic mercury: An environmental threat to the health of exposed societies[J]. Reviews on Environmental Health, 1997, 12(2): 107-116.

[2] Schroeder W H, Munthe J. Atmospheric mercury - an overview[J]. Atmospheric Environment, 1998, 32(5): 809-822.

[3] Lindberg S, Bullock R, Ebinghaus R, et al. A Synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J]. AMBIO: A Journal of the Human Environment, 2007, 36(1): 19-32.

[4] 李金兰, 罗津晶, 张龙东, 等. 二次金汞齐冷原子荧光光谱法测定大气痕量汞[J]. 厦门大学学报(自然科学版), 2011, 50(3): 574-578.

    Li Jinlan, Luo Jinjing, Zhang Longdong, et al. Determination of trace atmospheric mercury by two-stage gold amalgamation cold vapor atomic fluorescence spectrometry method[J]. Journal of Xiamen University (Natural Science), 2011, 50(3): 574-578.

[5] Ivannikova N V, Shiryaeva O A, Karpov Y A. Atomic absorption determination of mercury in solid samples of placer gold[J]. Inorganic Materials, 2010, 46(14): 1499-1502.

[6] Zhang Y L, Adeloju S B. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry[J]. Analytica Chimica Acta, 2012, 721(7): 22-27.

[7] Pacyna E G, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000[J]. Atmospheric Environment, 2006, 40(22): 4048-4063.

[8] 王 圣, 刘红志, 陈 辉. 国内外燃煤电厂汞排放控制技术比较分析[J]. 中国环保产业, 2012, 7: 42-46.

    Wang Sheng, Liu Hongzhi, Chen Hui. Comparative analysis on control technique of mercury discharge in coal-fired power plant at home and abroad[J]. China Environmental Protection Industry, 2012, 7: 42-46.

[9] AMAP/UNEP. Technical background report to the global atmospheric mercury assessment[R]. Nairobi, Kenya: Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch, 2008: 159.

[10] 钟 犁, 肖 平, 江建忠, 等. 燃煤电厂大气汞排放监测方法分析及试验研究[J]. 中国电机工程学报, 2012, 32(S): 158-163.

    Zhong Li, Xiao Ping, Jiang Jianzhong, et al. Study on several measuring methods of mercury emission from coal-fired power plants[J]. Proceedings of the CSEE, 2012, 32(S): 158-163.

[11] 环境保护部, 国家质量监督检验检疫总局. 火电厂大气污染物排放标准: GB 13223-2011[S]. 北京: 中国环境科学出版社, 2011: 3-4.

    Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quanrantine. Emission standard of air pollutants for thermal power plants: GB 13223-2011[S]. Beijing: China Environmental Science Press, 2011: 3-4.

[12] 刘 进, 司福祺, 周海金, 等. 基于成像差分吸收光谱技术测量电厂SO2排放方法研究[J]. 光学学报, 2015, 35(6): 0630003.

    Liu Jin, Si Fuqi, Zhou Haijin, et al. Estimation of sulfur dioxide emission from power plant using imaging differential optical absorption spectroscopy technique[J]. Acta Optica Sinica, 2015, 35(6): 0630003.

[13] 李素文, 韦民红, 戴海峰, 等. 多轴DOAS断层扫描技术重构工业排放空间分布[J]. 光学学报, 2015, 35(4): 0401003.

    Li Suwen, Wei Minhong, Dai Haifeng, et al. Reconstruction of spatial distributions of industrial emissions based on scaning multi-axis DOAS tomography[J]. Acta Optica Sinica, 2015, 35(4): 0401003.

[14] 郁敏捷, 刘铭晖, 董作人, 等. 基于傅里叶变换的差分吸收光谱法测量NH3和SO2浓度的实验研究[J]. 中国激光, 2015, 42(9): 0915001.

    Yu Minjie, Liu Minghui, Dong Zuoren, et al. Study on measuring concentration of ammonia and sulphur dioxide by differential optical absorption spectrometry based on fast Fourier transform[J]. Chinese J Lasers, 2015, 42(9): 0915001.

[15] 王青峰. 湿法脱硫系统中氧化态汞的还原行为及脱硫石膏中汞的稳定性研究[D]. 杭州: 浙江大学, 2015.

    Wang Qingfeng. Study on oxidized mercury reduction inhibition in wet FGD system and the stability of mercury in desulfurzation gypsum[D]. Hangzhou: Zhejiang University, 2015.

[16] 李传新, 司福祺, 周海金, 等. 基于普通汞灯光源的横向塞曼效应背景校正大气汞检测方法研究[J]. 物理学报, 2014, 63(7): 074202.

    Li Chuanxin, Si Fuqi, Zhou Haijin, et al. New transverse Zeeman effect method for mercury detection based on common mercury lamp[J]. Acta Physica Sinica, 2014, 63(7): 074202.

[17] Frentiu T, Mihaltan A I, Ponta M, et al. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry[J]. Journal of Hazardous Materials, 2011, 193(2): 65-69.

[18] 李传新, 刘文清, 司福祺, 等. 基于差分吸收光谱技术(DOAS)的气态汞污染测量[J]. 大气与环境光学学报, 2012, 7(1): 38-43.

    Li Chuanxin, Liu Wenqing, Si Fuqi, et al. Atmospheric mercury pollution with differential optical absorption spectroscopy (DOAS)[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(1): 38-43.

[19] 邓 勃, 何华焜. 原子吸收光谱分析[M]. 北京: 化学工业出版社, 2004: 1-20.

    Deng Bo, He Huakun. Atomic absorption spectral analysis[M]. Beijing: Chemical Industry Press, 2004: 1-20.

[20] Hadeishi T, Church D A, Mclaughlin R D. Mercurymonitor for ambient air[J]. Science, 1975, 187(4174): 348-349.

[21] 张建华. 湿法烟气脱硫浆液中二价汞再释放研究[D]. 北京: 华北电力大学, 2011.

    Zhang Jianhua. Study on mercuryre-emission from the liquors of wet flue gas desulfrization[D]. Beijing: North China Electric Power University, 2011.

[22] Hadeishi T, Mclaughlin R D. Hyperfine Zeeman effect atomic absorption spectrometer for mercury[J]. Science, 1971, 174(4007): 404-407.

[23] Huber M L, Laesecke A, Friend D G. Correlation for the vapor pressure of mercury[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7351-7361.

[24] 杨 凯. 固定污染源烟气汞监测技术与设备[M]. 北京: 中国电力出版社, 2012: 8-75.

    Yang Kai. Flue gas mercury monitoring technology and equipment in stationary pollution source[M]. Beijing: China Electric Power Press, 2012: 8-75.

[25] 杨宏旻, 刘坤磊, 曹 艳, 等. 电站烟气脱硫装置的脱汞特性试验[J]. 动力工程, 2006, 26(4): 554-567.

    Yang Hongmin, Liu Kunlei, Cao Yan, et al. Demercurization property of flue gas desulfurization installations in power plants[J]. Journal of Power Engineering, 2006, 26(4): 554-567.

[26] 王运军, 段钰锋, 杨立国, 等. 湿法烟气脱硫装置和静电除尘器联合脱除烟气中汞的试验研究[J]. 中国电机工程学报, 2008, 28(29): 64-69.

    Wang Yunjun, Duan Yufeng,Yang Liguo, et al. Experimental study on mercury removal by combined wet flue gas desulphurization with electrostatic precipitator[J]. Proceedings of the CSEE, 2008, 28(29): 64-69.

[27] 李少华, 徐英健, 王 虎, 等. WFGD系统脱硫及脱汞特性模拟研究[J]. 锅炉技术, 2014, 45(6): 72-76.

    Li Shaohua, Xu Yingjian,Wang Hu, et al. Simulation study on the take off mercury and sulfur performance in the wet flue gas desulfurization system[J]. Boiler Technology, 2014, 45(6): 72-76.

张勇, 司福祺, 李传新, 曾议, 刘文清, 周海金. 基于塞曼原子吸收法的燃煤电厂汞排放监测研究[J]. 激光与光电子学进展, 2017, 54(8): 080101. Zhang Yong, Si Fuqi, Li Chuanxin, Zeng Yi, Liu Wenqing, Zhou Haijin. Monitoring of Mercury Emission in Coal-Fired Power Plant Based on Zeeman Atomic Absorption Spectrometry[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080101.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!