激光与光电子学进展, 2018, 55 (1): 013001, 网络出版: 2018-09-10   

基于高光谱多尺度分解的土壤含水量反演 下载: 1257次

Inversion of Soil Moisture Content Based on Hyperspectral Multi-Scale Decomposition
蔡亮红 1,2丁建丽 1,2,*
作者单位
1 新疆大学资源与环境科学学院智慧城市与环境建模自治区普通高校重点实验室, 新疆 乌鲁木齐 830046
2 新疆大学绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
引用该论文

蔡亮红, 丁建丽. 基于高光谱多尺度分解的土壤含水量反演[J]. 激光与光电子学进展, 2018, 55(1): 013001.

Cai Lianghong, Ding Jianli. Inversion of Soil Moisture Content Based on Hyperspectral Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 013001.

参考文献

[1] 邹文秀, 韩晓增, 江恒, 等. 东北黑土区降水特征及其对土壤水分的影响[J]. 农业工程学报, 2011, 27(9): 196-202.

    Zou W X, Han X Z, Jiang H, et al. Characteristics of precipitation in black soil region and response of soil moisture dynamics in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 196-202.

[2] 张定海, 李新荣, 陈永乐. 腾格里沙漠人工植被区固沙灌木影响深层土壤水分的动态模拟研究[J]. 生态学报, 2016, 36(11): 3273-3279.

    Zhang D H, Li X R, Chen Y L. Simulation study on the effects of sand binding shrub on the deep soil water in a recovered area on the southeast fringe of Tengger Desert, North China[J]. Acta Ecologica Sinica, 2016, 36(11): 3273-3279.

[3] 孙越君, 郑小坡, 秦其明, 等. 不同质量含水量的土壤反射率光谱模拟模型[J]. 光谱学与光谱分析, 2015, 35(8): 2236-2240.

    Sun Y J, Zheng X P, Qin Q M, et al. Modeling soil spectral reflectance with different mass moisture content[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2236-2240.

[4] Muller E, Décamps H. Modeling soil moisture-reflectance[J]. Remote Sensing of Environment, 2001, 76(2): 173-180.

[5] Lobell D B, Asner G P. Moisture effects on soil reflectance[J]. Soil Science Society of America Journal, 2002, 66(3): 722-727.

[6] 姜雪芹, 叶勤, 林怡, 等. 基于HA和高光谱遥感的土壤含水量反演研究[J]. 光学学报, 2017, 37(10): 300-310.

    Jiang X Q, Ye Q, Lin Y, et al. Study on inverting soil water content based on harmonic analysis and hyperspectral remote sensing[J]. Acta Optica Sinica, 2017, 37(10): 300-310.

[7] 吕云峰, 孙仲秋, 赵云升. 基于野外双向反射信息利用反射模型反演土壤含水量研究[J]. 光学学报, 2015, 35(3): 0328001.

    Lü Y F, Sun Z Q, Zhao Y S. Study on inverting soil moisture content based on the field bidirectional reflectance information with the reflection model[J]. Acta Optica Sinica, 2015, 35(3): 0328001.

[8] Hummel J W, Sudduth K A, Hollinger S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor[J]. Computers and Electronics in Agriculture, 2001, 32(2): 149-165.

[9] 李明亮, 李西灿, 张爽. 土壤含水量高光谱灰色关联度估测模式[J]. 测绘科学技术学报, 2016, 33(2): 163-168.

    Li M L, Li X C, Zhang S. Grey relation estimating pattern of soil water content based on hyper-spectral data[J]. Journal of Geomatics Science and Technology, 2016, 33(2): 163-168.

[10] 金秀良, 徐新刚, 王纪华, 等. 基于灰度关联分析的冬小麦叶片含水量高光谱估测[J]. 光谱学与光谱分析, 2012, 32(11): 3103-3106.

    Jin X L, Xu X G, Wang J H, et al. Hyperspectral estimation of leaf water content for winter wheat based on grey relational analysis(GRA)[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3103-3106.

[11] Yin Z, Lei T, Yan Q, et al. A near-infrared reflectance sensor for soil surface moisture measurement[J]. Computers and Electronics in Agriculture, 2013, 99: 101-107.

[12] 张锐, 李兆富, 潘剑君. 小波包-局部最相关算法提高土壤有机碳含量高光谱预测精度[J]. 农业工程学报, 2017, 33(1): 175-181.

    Zhang R, Li Z F, Pan J J. Coupling discrete wavelet packet transformation and local correlation maximization improving prediction accuracy of soil organic carbon based on hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 175-181.

[13] Blanco M, Coello J, Iturriaga H, et al. NIR calibration in non-linear systems: different PLS approaches and artificial neural networks[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 75-82.

[14] Kaewpijit S, Moigne J L, El-Ghazawi T. Automatic reduction of hyperspectral imagery using wavelet spectral analysis[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(4): 863-871.

[15] 廖钦洪, 顾晓鹤, 李存军, 等. 基于连续小波变换的潮土有机质含量高光谱估算[J]. 农业工程学报, 2012, 28(23): 132-139.

    Liao Q H, Gu X H, Li C J, et al. Estimation of fluvo-aquic soil organic matter content from hyperspectral reflectance based on continuous wavelet transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 132-139.

[16] 郑立华, 李民赞, 潘娈, 等. 近红外光谱小波分析在土壤参数预测中的应用[J]. 光谱学与光谱分析, 2009, 29(6): 1549-1552.

    Zheng L H, Li M Z, Pan L, et al. Application of wavelet packet analysis in estimating soil parameters based on NIR spectra[J]. Spectroscopy and Spectral Analysis, 2009, 29(6): 1549-1552.

[17] 李瑞平, 史海滨, 张晓红, 等. 基于小波变换的最大冻深期气温与土壤水盐特征分析[J]. 农业工程学报, 2012, 28(6): 82-87.

    Li R P, Shi H B, Zhang X H, et al. Characteristic analysis of temperature, soil water and salt during maximum freezing depth period based on wavelet transform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 82-87.

[18] 孙国栋, 秦来安, 程知, 等. 小波去噪在成像激光雷达仿真信号中的应用[J]. 激光与光电子学进展, 2017, 54(9): 090102.

    Sun G D, Qin L A, Cheng Z, et al. Applications of wavelet noise reduction for simulated signals of imaging lidar[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090102.

[19] Lin L, Wang Y, Teng J, et al. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression[J]. Environmental Monitoring & Assessment, 2016, 188(2): 97.

[20] ShieQ. Introduction to time-frequency and wavelet transforms[M]. London: Prentice Hall, 2001.

[21] 刘燕德, 欧阳爱国, 应义斌. 小波分析用于光谱信号处理及其在Matlab中的实现[J]. 传感技术学报, 2006, 19(3): 821-823.

    Liu Y D, Ouyang A G, Ying Y B. Application of wavelet analysis in signal process using Matlab[J]. Chinese Journal of Sensors and Actuators, 2006, 19(3): 821-823.

[22] Xu C, Cai C, Pi M, et al. Correlation wavelet and its applications[J]. Chinese Quarterly Journal of Mathematics, 1999, 14(1): 5-9.

[23] Kaewpijit S, Moigne J L, Elghazawi T. Spectral data reduction via wavelet decomposition[J]. Aerosense, 2002, 388(4): 56-63.

[24] 于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量[J]. 农业工程学报, 2016, 32(22): 138-145.

    Yu L, Zhu Y X, Hong Y S, et al. Determination of soil moisture content by hyperspectral technology with CARS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 138-145.

[25] 于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015, 31(14): 103-109.

    Yu L, Hong Y S, Geng L, et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 103-109.

[26] 薛利红, 周鼎浩, 李颖, 等. 不同利用方式下土壤有机质和全磷的可见近红外高光谱反演[J]. 土壤学报, 2014, 51(5): 993-1002.

    Xue L H, Zhou D H, Li Y, et al. Prediction of soil organic matter and total phosphorus with VIS-NIR hyperspectral inversion relative to land use[J]. Acta Pedologica Sinica, 2014, 51(5): 993-1002.

[27] Shi Z, Wang Q, Peng J, et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Science China Earth Sciences, 2014, 57(7): 1671-1680.

[28] 仝兆远, 张万昌. 土壤水分遥感监测的研究进展[J]. 水土保持通报, 2007, 27(4): 107-113.

    Tong Z Y, Zhang W C. Progress of soil moisture monitoring by remote sensing[J]. Bulletin of Soil & Water Conservation, 2007, 27(4): 107-113.

[29] 陈红艳, 赵庚星, 张晓辉, 等. 去除水分影响提高土壤有机质含量高光谱估测精度[J]. 农业工程学报, 2014, 30(8): 91-100.

    Chen H Y, Zhao G X, Zhang X H, et al. Improving estimation precision of soil organic matter content by removing effect of soil moisture from hyperspectra[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8): 91-100.

[30] 陈至坤, 张菡洁, 王玉田, 等. 基于小波变换的矿物油荧光光谱数据处理方法[J]. 激光杂志, 2016, 37(10): 78-81.

    Chen Z K, Zhang H J, Wang Y T, et al. Fluorescence spectral date of mineral oil processing based on wavelet transform[J]. Laser Journal, 2016, 37(10): 78-81.

[31] 王延仓, 杨贵军, 朱金山, 等. 基于小波变换与偏最小二乘耦合模型估测北方潮土有机质含量[J]. 光谱学与光谱分析, 2014, 34(7): 1922-1926.

    Wang Y C, Yang G J, Zhu J S, et al. Estimation of organic matter content of north fluvo-aquic soil based on the coupling model of wavelet transform and partial least squares[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1922-1926.

[32] Hymer D C, Moran M S, Keefer T O. Soil water evaluation using a hydrologic model and calibrated sensor network[J]. Soil Science Society of America Journal, 2000, 64(1): 319-326.

[33] 何挺, 王静, 程烨, 等. 土壤水分光谱特征研究[J]. 土壤学报, 2006, 43(6): 1027-1032.

    He T, Wang J, Cheng Y, et al. Spectral features of soil moisture[J]. Acta Pedologica Sinica, 2006, 43(6): 1027-1032.

[34] 刘培君, 张琳. 艾里西尔·库尔班, 等. 卫星遥感估测土壤水分的一种方法[J]. 遥感学报, 1997, 1(2): 135-138.

    Liu P J, Zhang L, Alishir K, et al. A method for monitoring soil water contents using satellite remote sensing[J]. Journal of Remote Sensing, 1997, 1(2): 135-138.

[35] 姚艳敏, 魏娜, 唐鹏钦, 等. 黑土土壤水分高光谱特征及反演模型[J]. 农业工程学报, 2011, 27(8): 95-100.

    Yao Y M, Wei N, Tang P Q, et al. Hyper-spectral characteristics and modeling of black soil moisture content[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 95-100.

[36] 刘伟东, Baret F. 张兵, 等. 高光谱遥感土壤湿度信息提取研究[J]. 土壤学报, 2004, 41(5): 700-706.

    Liu W D, Baret F, Zhang B, et al. Extraction of soil moisture information by hyperspectral remote sensing[J]. Acta Pedologica Sinica, 2004, 41(5): 700-706.

蔡亮红, 丁建丽. 基于高光谱多尺度分解的土壤含水量反演[J]. 激光与光电子学进展, 2018, 55(1): 013001. Cai Lianghong, Ding Jianli. Inversion of Soil Moisture Content Based on Hyperspectral Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 013001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!