激光与光电子学进展, 2019, 56 (7): 070001, 网络出版: 2019-07-30   

光声成像技术在早期癌症检测治疗中的潜在应用 下载: 1885次

Potential Applications of Photoacoustic Imaging in Early Cancer Diagnosis and Treatment
作者单位
福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室, 福建 福州 350007
引用该论文

吴华钦, 王昊宇, 谢文明, 李志芳, 吴淑莲, 李晖. 光声成像技术在早期癌症检测治疗中的潜在应用[J]. 激光与光电子学进展, 2019, 56(7): 070001.

Huaqin Wu, Haoyu Wang, Wenming Xie, Zhifang Li, Shulian Wu, Hui Li. Potential Applications of Photoacoustic Imaging in Early Cancer Diagnosis and Treatment[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070001.

参考文献

[1] StewartB, Wild CP. World cancer report 2014[R]. Geneva: World Health Organization, 2015.

[2] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2017[J]. CA: A Cancer Journal for Clinicians, 2017, 67(1): 7-30.

[3] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880, 20: 305- 324.

[4] Rosencwaig A. Photoacoustic spectroscopy of biological materials[J]. Science, 1973, 181(4100): 657-658.

[5] Ma Y, Yu X, Yu G. et al. Multi-quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 2015, 107(2): 021106.

[6] Sanchez-Hernandez G, Hernandez-Aguilar C, Dominguez-Pacheco A, et al. The optical absorption coefficient of bean seeds investigated using photoacoustic spectroscopy[J]. International Journal of Thermophysics, 2015, 36(5/6): 835-843.

[7] Saalberg Y, Bruhns H, Wolff M. Photoacoustic spectroscopy for the determination of lung cancer biomarkers: apreliminary investigation[J]. Sensors, 2017, 17(12): 210.

[8] Yang S R, Qin W, Guo H, et al. Design and evaluation of a compound acoustic lens for photoacoustic computed tomography[J]. Biomedical Optics Express, 2017, 8(5): 2756-2765.

[9] Li L, Zhu L R, Ma C, et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 2017, 1(5): 0071.

[10] Yeh C, Li L, Zhu L R, et al. Dry coupling for whole-body small-animal photoacoustic computed tomography[J]. Journal of Biomedical Optics, 2017, 22(4): 041017.

[11] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4): 041101.

[12] Li L, Xia J, Li G. et al. Label-free structural photoacoustic tomography of intact mouse brain[J]. Proceedings of SPIE, 2015, 9323: 93230M.

[13] Shang S S, Chen Z J, Zhao Y, et al. Simultaneous imaging of atherosclerotic plaque composition and structure with dual-mode photoacoustic and optical coherence tomography[J]. Optics Express, 2017, 25(2): 530-539.

[14] Jathoul A P, Laufer J, Ogunlade O, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 2015, 9(4): 239-246.

[15] Jeon M, Kim J, Kim C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo[J]. Medical & Biological Engineering & Computing, 2016, 54(2/3): 283-294.

[16] Li H, Kumavor P, Salman Alqasemi U, et al. Utilizing spatial and spectral features of photoacoustic imaging for ovarian cancer detection and diagnosis[J]. Journal of Biomedical Optics, 2015, 20(1): 016002.

[17] Lakshman M, Needles A. Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging[J]. Nature Methods, 2015, 12(4).

[18] Taruttis A, Timmermans A C, Wouters P C, et al. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe[J]. Radiology, 2016, 281(1): 256-263.

[19] Chen B Z, Yang J G, Wu D, et al. Photoacoustic imaging of cerebral hypoperfusion during acupuncture[J]. Biomedical Optics Express, 2015, 6(9): 3225-3234.

[20] Razansky D. Volumetric multi-spectral optoacoustic tomography for high performance structural, functional, and molecular imaging[J]. The Journal of the Acoustical Society of America, 2016, 140(4): 2978-2979.

[21] Tang J B, Coleman J E, Dai X J, et al. Wearable 3-dphotoacoustic tomography for functional brain imaging in behaving rats[J]. Scientific Reports, 2016, 6: 25470.

[22] Gottschalk S. FelixFehm T, LuísDeán-Ben X, et al. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography[J]. Journal of Cerebral Blood Flow & Metabolism, 2015, 35(4): 531-535.

[23] Wang L D, Maslov K, Xing W X, et al. Video-rate functional photoacoustic microscopy at depths[J]. Journal of Biomedical Optics, 2012, 17(10): 106007.

[24] Mitcham T, Dextraze K, Taghavi H, et al. Photoacoustic imaging driven by an interstitial irradiation source[J]. Photoacoustics, 2015, 3(2): 45-54.

[25] Becker A, Masthoff M, Claussen J, et al. Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach[J]. European Radiology, 2018, 28(2): 602-609.

[26] Diot G, Metz S, Noske A, et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer[J]. Clinical Cancer Research, 2017, 23(22): 6912-6922.

[27] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 2006, 24(7): 848-851.

[28] Yao J J, Wang L D, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 2015, 12(5): 407-410.

[29] Yao J J, Maslov K I, Zhang Y, et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 2011, 16(7): 076003.

[30] Wong T T W, Zhang R Y, Hai P F, et al. . Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy[J]. Science Advances, 2017, 3(5): e1602168.

[31] Yao D K K, Chen R, Maslov K, et al. . Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei[J]. Journal of Biomedical Optics, 2012, 17(5): 056004.

[32] Brecht H P, Su R, Fronheiser M, et al. Whole-body three-dimensional optoacoustic tomography system for small animals[J]. Journal of Biomedical Optics, 2009, 14(6): 064007.

[33] Galanzha E I, Shashkov E V, Spring P M, et al. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser[J]. Cancer Research, 2009, 69(20): 7926-7934.

[34] Cox B, Laufer J G, Arridge S R, et al. Quantitative spectroscopic photoacoustic imaging: a review[J]. Journal of Biomedical Optics, 2012, 17(6): 061202.

[35] Jo J, Lee C H, Kopelman R, et al. In vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging[J]. Nature Communications, 2017, 8: 471.

[36] Hennen S N, Xing W X, Shui Y B, et al. Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits[J]. Experimental Eye Research, 2015, 138: 153-158.

[37] Andreev V G, Karabutov A A, Solomatin S V, et al. Optoacoustic tomography of breast cancer with arc-array transducer[J]. Proceedings of SPIE, 2000, 3916: 36-48.

[38] Meiburger M, Nam Y, Chung E, et al. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging[J]. Physics in Medicine and Biology, 2016, 61(22): 7994-8009.

[39] Ding T, Ren K, Vallélian S. A one-step reconstruction algorithm for quantitative photoacoustic imaging[J]. Inverse Problems, 2015, 31(9): 095005.

[40] Hoelen C G A. A new theoretical approach to photoacoustic signal generation[J]. The Journal of the Acoustical Society of America, 1999, 106(2): 695-706.

[41] 邵惠民. 数学物理方法[M]. 第2版. 北京: 科学出版社, 2010.

    Shao HM. Mathematical physical method[M]. 2rd ed. Beijing: Science Press, 2010.

[42] 梁昆淼. 数学物理方法[M]. 第4版. 北京: 高等教育出版社, 2010.

    Liang KM. Mathematical physical method[M]. 4th ed. Beijing: Higher Education Press, 2010.

[43] Kolkman R G M, Hondebrink E, et al. . Photoacoustic determination of blood vessel diameter[J]. Physics in Medicine and Biology, 2004, 49(20): 4745-4756.

[44] Paltauf G, Schmidt-Kloiber H, Frenz M. Photoacoustic waves excited in liquids by fiber-transmitted laser pulses[J]. The Journal of the Acoustical Society of America, 1998, 104(2): 890-897.

[45] Paltauf G, Schmidt-Kloiber H. Pulsed optoacoustic characterization of layered media[J]. Journal of Applied Physics, 2000, 88(3): 1624-1631.

[46] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8): 627-638.

[47] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7): 1134-1136.

[48] Vienneau E, Liu W, Yao J J. Dual-view acoustic-resolution photoacoustic microscopy with enhanced resolution isotropy[J]. Optics Letters, 2018, 43(18): 4413-4416.

[49] Leng X D, Chapman W, Rao B. et al. Feasibility of co-registered ultrasound and acoustic-resolution photoacoustic imaging of human colorectal cancer[J]. Biomedical Optics Express, 2018, 9(11): 5159-5172.

[50] Yuan Y, Yang S H, Xing D. Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array[J]. Optics Letters, 2010, 35(13): 2266-2268.

[51] Wu H Q, Li Z R, Liu L T, et al. Photoacoustic imaging of early gastric cancer diagnosis based on long focal area ultrasound transducer[J]. Journal of Physics: Conference Series, 2017, 844: 012051.

[52] 彭东青, 谢文明, 吴淑莲, 等. 基于柱弥散光源体内辐照的前列腺扫描光声成像仿体实验[J]. 物理学报, 2015, 64(20): 207801.

    Peng D Q, Xie W M, Wu S L, et al. Phantom experimental photoacoustic scanning imaging of prostate based on internal light irradiation using cylindrical diffusing source[J]. Acta Physica Sinica, 2015, 64(20): 207801.

[53] Fakhrejahani E, Torii M, Kitai T, et al. Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging[J]. PLoS One, 2015, 10(10): e0139113.

[54] Tian C, Qian W, Shao X, et al. Photoacoustic imaging: plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells[J]. Advanced Science, 2016, 3(12): 1600237.

[55] Priya M. Rao B S S, Chandra S, et al. Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study[J]. Proceedings of SPIE, 2016, 9689: 968943.

[56] Chen YS, YeagerD, Emelianov SY. Photoacoustic imaging for cancer diagnosis and therapy guidance[M]. Amsterdam: Elsevier, 2014: 139- 158.

[57] Valluru K S, Willmann J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 2016, 35(4): 267-280.

[58] Lin L, Hu P, Shi J H, et al. Clinical photoacoustic computed tomography of the human breast in vivo within a single breath hold[J]. Proceedings of SPIE, 2018, 10494: 104942X.

[59] Triratanachat S, Niruthisard S, Trivijitsilp P, et al. Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance[J]. International Journal of Gynecological Cancer, 2006, 16(2): 575-580.

[60] Toi M, Asao Y. MatsumotoY, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array[J]. Scientific Reports, 2017, 7: 41970.

[61] Bohndiek S E, Sasportas L S. MacHtaler S, et al. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the antiangiogenic therapy trebananib[J]. Journal of Nuclear Medicine, 2015, 56(12): 1942-1947.

[62] Breathnach A, Concannon E, Dorairaj J J, et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging[J]. Journal of Medical Imaging, 2018, 5(1): 015004.

[63] Breathnach A, Concannon L, Aalto L, et al. Assessment of cutaneous melanoma and pigmented skin lesions with photoacoustic imaging[J]. Proceedings of SPIE, 2015, 9303: 930303.

[64] Lavaud J, Henry M, Coll J L, et al. Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging[J]. International Journal of Pharmaceutics, 2017, 532(2): 704-709.

[65] ZimmermannA. Nucleus, nuclear structure, and nuclear functions: pathogenesis of nuclear abnormalities in cancer[M]. Cham: Springer International Publishing, 2016: 3071- 3087.

[66] Singh N, Gilks C B. The changing landscape of gynaecological cancer diagnosis: implications for histopathological practice in the 21st century[J]. Histopathology, 2017, 70(1): 56-69.

[67] Partin A W, Kattan M W. Subong E N P, et al. Combination of prostate-specific antigen, clinical stage, and gleason score to predict pathological stage of localized prostate cancer[J]. JAMA, 1997, 277(18): 1445-1451.

[68] Attia A B E, Ho C J H, Chandrasekharan P, et al. . Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma[J]. Journal of Biophotonics, 2016, 9(7): 701-708.

[69] Stantz K M, Cao M S, Liu B, et al. Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors[J]. Proceedings of SPIE, 2010, 7564: 75641O.

[70] Weber J, Beard P C, Bohndiek S E. Contrast agents for molecular photoacoustic imaging[J]. Nature Methods, 2016, 13(8): 639-650.

[71] Liu C, Li S Y, Gu Y J, et al. Multispectral photoacoustic imaging of tumor protease activity with a gold nanocage-based activatable probe[J]. Molecular Imaging and Biology, 2018, 20(6): 919-929.

[72] Li W W, Chen X Y. Gold nanoparticles for photoacoustic imaging[J]. Nanomedicine, 2015, 10(2): 299-320.

[73] Balasundaram G. Ho C J H, Li K, et al. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer[J]. International Journal of Nanomedicine, 2015, 10: 387.

[74] Wilson KE, Valluru KS, Willmann JK. Nanoparticles for photoacoustic imaging of cancer[M]. Cham: Springer International Publishing, 2016: 315- 335.

[75] Sajid M I, Jamshaid U, Jamshaid T, et al. Carbon nanotubes from synthesis to in vivo biomedical applications[J]. International Journal of Pharmaceutics, 2016, 501(1/2): 278-299.

[76] Kumar S, Rani R, Dilbaghi N, et al. Carbon nanotubes: a novel material for multifaceted applications in human healthcare[J]. Chemical Society Reviews, 2017, 46(1): 158-196.

[77] Vaupel P, Mayer A. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities[J]. Antioxidants & Redox Signaling, 2015, 22(10): 878-880.

[78] Zhang LY. Identification and characterization of tumor suppressor gene and cancer stemness gene in esophageal squamous cell carcinoma[D]. Hong Kong: The University of Hong Kong Libraries, 2015.

[79] ZhangM, Liu CM, Zhang ZH, et al. A new flavonoid regulates angiogenesis and reactive oxygen species production[M]. New York: Springer, 2014: 149- 155.

[80] Dovlo E, Lashkari B, Sean Choi S, et al. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection[J]. Journal of Biophotonics, 2017, 10(9): 1134-1142.

[81] Lin R, Chen J, Wang H. et al. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo[J]. Quantitative Imaging in Medicine and Surgery, 2015, 5(1): 23.

[82] Gerling M, Zhao Y, Nania S, et al. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound[J]. Theranostics, 2014, 4(6): 604-613.

[83] Paproski R J, Heinmiller A, Wachowicz K, et al. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors[J]. Scientific Reports, 2015, 4: 5329.

[84] Naser M A, Munoz N. Sampaio D R T, et al. Imaging biomarker development based on microbubble perfusion and oxygen saturation in a rat model of liver cancer[J]. Proceedings of SPIE, 2018, 10580: 1058007.

[85] Wood C, Harutyunyan K. Cerda J D L, et al. Assessment of blood oxygen saturation using spectroscopic photoacoustic imaging as a biomarker for disease progression in a small-animal leukemia model[J]. Proceedings of SPIE, 2018, 10580: 105800W.

[86] Gray L H, Steadman J M. Determination of theoxyhaemoglobin dissociation curves for mouse and rat blood[J]. The Journal of Physiology, 1964, 175(2): 161-171.

[87] Siphanto R I, Thumma K K. Kolkman R G M, et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis[J]. Optics Express, 2005, 13(1): 89-95.

[88] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 2015, 8(4): 279-302.

[89] 王金华. 激光散斑组织弹性成像初步研究[D]. 武汉: 华中科技大学, 2014.

    Wang JH. Preliminary study on laser speckle tissue elastography[D]. Wuhan: Huazhong University of Science and Technology, 2014.

[90] Glatz T, Scherzer O, Widlak T. Texture generation for photoacoustic elastography[J]. Journal of Mathematical Imaging and Vision, 2015, 52(3): 369-384.

[91] Zhao Y, Yang S H, Chen C G, et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 2014, 39(9): 2565-2568.

[92] Jin D Y, Yang F, Chen Z J, et al. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease[J]. Applied Physics Letters, 2017, 111(10): 103703.

[93] Mallidi S, Luke G P, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance[J]. Trends in Biotechnology, 2011, 29(5): 213-221.

[94] Biswas D, Gorey A. Chen G C K, et al. Investigation of diseases through red blood cells' shape using photoacoustic response technique[J]. Proceedings of SPIE, 2015, 9322: 93220K.

[95] Saha R K, Fadhel M N, Lawrence A, et al. Rapid computation of photoacoustic fields from normal and pathological red blood cells using a Green's function method[J]. Proceedings of SPIE, 2017, 10064: 100644U.

[96] Rabiner L R, Gold B. Theory and application of digital signal processing[J]. Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975, 777.

[97] Cheong C, Joseph P, Lee S. High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction[J]. The Journal of the Acoustical Society of America, 2006, 119(1): 108-122.

[98] Sinha S, Rao N A, Chinni B K, et al. Evaluation of frequency domain analysis of a multiwavelength photoacoustic signal for differentiating malignant from benign and normal prostates[J]. Journal of Ultrasound in Medicine, 2016, 35(10): 2165-2177.

[99] Nandy S, Mostafa A, Hagemann I S. et al. Evaluation of ovarian cancer: initial application of coregistered photoacoustic tomography and US[J]. Radiology, 2018, 289(3): 740-747.

[100] Kumon R E, Deng C X, Wang X D. Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model[J]. Ultrasound in Medicine & Biology, 2011, 37(5): 834-839.

[101] Wang S H, Tao C, Yang Y Q, et al. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7): 1245-1255.

[102] Lin L, Hu P, Shi J H, et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 2018, 9: 2352.

[103] Neuschler E I, Butler R, Young C A, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2018, 287(2): 398-412.

[104] Menezes G L G, Pijnappel R M, Meeuwis C, et al. . Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging[J]. Radiology, 2018, 288(2): 355-365.

[105] Garcia-Uribe A, Erpelding T N, Krumholz A, et al. Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer[J]. Scientific Reports, 2015, 5: 15748.

[106] Li M C, Liu C B, Gong X J, et al. Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping[J]. Biomedical Optics Express, 2018, 9(4): 1408-1422.

[107] Daeichin V, Chen C, Ding Q, et al. A broadband polyvinylidene difluoride-based hydrophone with integrated readout circuit for intravascular photoacoustic imaging[J]. Ultrasound in Medicine & Biology, 2016, 42(5): 1239-1243.

[108] Li Z F, Li H, Chen H Y, et al. In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer[J]. Journal of Biomedical Optics, 2011, 16(7): 076011.

[109] Piao Z L, Ma T, Qu Y Q, et al. High speed intravascular photoacoustic imaging of atherosclerotic arteries[J]. Proceedings of SPIE, 2016, 9689: 968930.

[110] Kneipp M, Turner J, Hambauer S, et al. Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice[J]. PLoS One, 2014, 9(4): e96118.

[111] TangJ, ColemanJ, DaiX, et al. 3D photoacoustic tomography brain imaging in behaving animal[C]∥Optical Tomography and Spectroscopy Optical Society of America, 2016: OM2C. 3.

[112] Zhang Q Z, Liu Z, Carney P R, et al. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography[J]. Physics in Medicine and Biology, 2008, 53(7): 1921-1931.

[113] Xie Z X, Roberts W, Carson P, et al. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging[J]. Optics Letters, 2011, 36(24): 4815-4817.

[114] Kim C, Jeon M, Wang L V. Nonionizing photoacoustic cystography in vivo[J]. Optics Letters, 2011, 36(18): 3599-3601.

[115] Mallidi S, Watanabe K, Timerman D, et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging[J]. Theranostics, 2015, 5(3): 289-301.

[116] Ho C JH, BalasundaramG, DriessenW, et al. Photoacoustic diagnostic imaging of photodynamic therapeutic contrast agents[C]∥Biomedical Optics, 2014: BS4A. 5.

[117] Li Z F, Liu Y B, Li H, et al. Monitoring tissue temperature for photothermal cancer therapy based on photoacoustic imaging: a pilot study[J]. Proceedings of SPIE, 2013, 8582: 858209.

[118] Li Z F, Chen H Y, Zhou F F, et al. Interstitial photoacoustic sensor for the measurement of tissue temperature during interstitial laser phototherapy[J]. Sensors, 2015, 15(3): 5583-5593.

[119] Stoffels I, Morscher S, Helfrich I, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging[J]. Science Translational Medicine, 2015, 7(317): 199.

[120] Langhout G C, Grootendorst D J, Nieweg O E, et al. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging[J]. International Journal of Biomedical Imaging, 2014, 2014: 163652.

[121] Neuschmelting V, Lockau H, Ntziachristos V, et al. Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model[J]. Radiology, 2016, 280(1): 137-150.

[122] 关天培, 方驰华. 光声成像技术及其在原发性肝癌边界界定中的应用[J]. 中华肝脏外科手术学电子杂志, 2016, 5(2): 65-67.

    Guan T P, Fang C H. Photoacoustic imaging technique and its application in the demarcation of primary liver cancer[J]. Chinese Journal of Hepatic Surgery, 2016, 5(2): 65-67.

[123] Aguirre A, Guo P Y, Gamelin J, et al. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization[J]. Journal of Biomedical Optics, 2009, 14(5): 054014.

[124] 邢达, 王雅婷, 许栋, 等. 一种基于光声原理的皮肤色素沉着成像装置:104146685A[P].2014-11-19.

    XingD, Wang YT, XuD, et al. A skin pigmentation imaging device based on photoacoustic principle:104146685A[P]. 2014-11-19.

[125] Zackrisson S, Gambhir S S. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Research, 2014, 74(4): 979-1004.

吴华钦, 王昊宇, 谢文明, 李志芳, 吴淑莲, 李晖. 光声成像技术在早期癌症检测治疗中的潜在应用[J]. 激光与光电子学进展, 2019, 56(7): 070001. Huaqin Wu, Haoyu Wang, Wenming Xie, Zhifang Li, Shulian Wu, Hui Li. Potential Applications of Photoacoustic Imaging in Early Cancer Diagnosis and Treatment[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!