中国激光, 2015, 42 (s1): s103005, 网络出版: 2015-09-14  

电-磁复合场协同作用对激光熔覆层凝固组织的调控研究

Regulation Research on Microstructure of Laser Cladding under Electric-Magnetic Synergistic Effect
作者单位
浙江工业大学激光加工技术工程研究中心,浙江 杭州 310014
摘要
在激光熔覆过程中,对熔覆层凝固组织的传统调控是通过改变激光功率、扫描速度、光斑大小等参数来实现的,但此类调控方法只能改变熔覆层熔池的传热边界,调控效果有限。为了实现对熔覆层熔池中传热传质行为的趋向性控制,有效调整凝固组织的形态、大小和方向,利用电-磁复合场的协同作用,产生方向、大小、频率可控的洛伦兹力,驱动或阻碍熔覆层熔池的对流运动,影响其凝固过程。仿真和实验有效证实了电-磁复合场协同作用对熔池所产生的影响力要远大于单一稳态磁场,是一种强有力的熔覆层组织调控手段,并有望提高通过激光组合增材制造的轮机高温部件的疲劳寿命和降低凝固组织的内部缺陷,将其推广应用于熔凝、合金化、焊接等其他激光加工领域。
Abstract
During the laser cladding process, the traditional methods of microstructure adjustment are to change the laser processing parameters, such as laser power, scanning speed and the size of laser beam. However, these methods only change the boundary of heat transfer of laser cladding layer, the regulation effect is limited. In order to achieve the directional control of heat and mass transfer behavior in laser cladding layer and regulate the shape, the size and the direction of the solidification microstructure effectively, one method using the synergistic effect of electric-magnetic field is proposed. This method can induce the Lorenz force, whose direction, magnitude and frequency are controllable. As a means of volume force, the controllable Lorenz force can drive or drag the convection of the molten pool, which affects the solidification process and realizes the adjustment of microstructure. In this research, the higher influence degree of electric-magnetic synergistic effect is verified numerically and experimentally. The application of this method can improve the fatigue life of the high temperature resistance of turbine parts and decrease the internal defects in the solidification microstructure. Meanwhile, this method can be not only applied in laser cladding process, but also used in laser remelting, laser alloying and laser welding process.
参考文献

[1] Shepeleva L, Medres B, Kaplan W D, et al.. Laser cladding of turbine blades[J]. Surf Coat Technol, 2000, 125(1): 45-48.

[2] 徐向阳, 陈光南, 刘文今. 先进的激光直接制造技术与现代航空装备维修[J]. 航空维修与工程, 2004,3: 28-30.

    Xu Xiangyang, Chen Guangnan, Liu wenjin. Advanced direct laser fabrication technology and modern aeronautic equipment repair[J]. Aviation Maintenance & Engineering, 2004, 3: 28-30.

[3] Flanagan A, O′connor T. Medical device coating by laser cladding: US, 8221822 [P].2012-7-17.

[4] Baldridge T, Poling G, Foroozmehr E, et al.. Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications[J]. Opt Laser Eng, 2013, 51(2): 180-184.

[5] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5): 473-478.

    Wang Huaming. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica Et Astronautica Sinica, 2002, 23(5): 473-478.

[6] 王新林, 漆海滨, 石世宏. 激光熔覆石化阀门密封面熔覆层裂纹控制的研究[J]. 激光技术, 2002, 26(5): 359-363.

    Wang Xinlin, Qi Haibin, Shi Shihong. Study on crack control of layer during laser cladding sealing surface of petrochemical valves[J]. Laser Technology, 2002, 26(5): 359-363.

[7] Alam M M, Kaplan A F H, Tuominen J, et al.. Analysis of the stress raising action of flaws in laser clad deposits[J]. Mater Des, 2013, 46: 328-337.

[8] Tobar M J, Alvarez C, Amado J M, et al.. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel[J]. Surf Coat Technol, 2006, 200(22): 6313-6317.

[9] 王宏宇, 左敦稳, 陆英艳, 等. 镍基合金激光熔覆MCrAlY涂层基体裂纹的成因与控制 [J]. 航空材料学报, 2008, 28(6): 57-60.

    Wang Hongyu, Zuo Dunwen, Lu Yingyan, et al.. Crack causes and control of MCrAlY coating of Ni-base alloy laser cladding[J]. Journal of Aeronautical Materials, 2008, 28(6): 57-60.

[10] 刘洪喜, 纪升伟, 蒋业华, 等. 旋转磁场辅助激光熔覆Fe60复合涂层的显微组织与性能[J]. 中国激光, 2013, 40(1): 0103007.

    Liu Hongxi, Ji Shengwei, Jiang Yehua. Microstructure and property of Fe60 composite coatings by rotating magnetic field auxiliary laser cladding[J]. Chinese J Lasers, 2013, 40(1): 0103007.

[11] 许华, 郑启光, 丁周华, 等. 电磁搅拌辅助激光熔覆硬质合金的研究[J]. 激光技术, 2005, 29(5): 449-451.

    Xu Hua, Zheng Qiguang, Ding Zhouhua, et al.. Study on laser cladding hard alloy with electro magneticstirring[J]. Laser Technology, 2005, 29(5): 449-451.

[12] Bachmann M, Avilov V, Gumenyuk A, et al.. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. Int J Heat Mass Transfer, 2013, 60: 309-321.

[13] Gatzen M, Tang Z. CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field[J]. Phys Pro, 2010, 5: 317-326.

[14] Gatzen M, Tang Z, Vollertsen F, et al.. X-ray investigation of melt flow behavior under magnetic stirring regime in laser beam welding of aluminum[J]. J Laser App, 2011, 23(3): 032002.

[15] Velde O, Gritzki R, Grundmann R. Numerical investigations of Lorentz force influenced Marangoni convection relevant to aluminum surface alloying[J]. Int J Heat Mass Transfer, 2001, 44(14): 2751-2762.

[16] Cheung N, Larosa M A, Osório W R R, et al.. Numerical Simulation and Experimental Analysis of Laser Surface Remelting of AISI 304 Stainless Steel Samples[J]. Mater Sci, 2010, 636: 1119-1124.

[17] Lu Y, Beckermann C, Ramirez J C. Three-dimensional phase-field simulations of the effect of convection on free dendritic growth[J]. J Cryst Growth, 2005, 280(1): 320-334.

[18] Asta M, Beckermann C, Karma A, et al.. Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater, 2009, 57(4): 941-971.

[19] Li D, Li R, Zhang P. A cellular automaton technique for modelling of a binary dendritic growth with convection[J]. Appl Meth Model, 2007, 31(6): 971-982.

王梁, 宋诗英, 胡勇, 姚建华. 电-磁复合场协同作用对激光熔覆层凝固组织的调控研究[J]. 中国激光, 2015, 42(s1): s103005. Wang Liang, Song Shiying, Hu Yong, Yao Jianhua. Regulation Research on Microstructure of Laser Cladding under Electric-Magnetic Synergistic Effect[J]. Chinese Journal of Lasers, 2015, 42(s1): s103005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!