激光与光电子学进展, 2015, 52 (3): 030003, 网络出版: 2015-02-05   

无杂质空位诱导量子阱混杂研究及应用现状 下载: 1037次

Present Status of Impurity Free Vacancy Disordering Research and Application
作者单位
1 西安理工大学自动化与信息工程学院, 陕西 西安 710048
2 中国科学院半导体研究所, 北京 100083
3 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
摘要
自量子阱混杂发现以来,其在这几十年的发展中取得了巨大进步。在各种量子阱混杂的方法中,无杂质空位扩散诱导量子阱混杂(IFVD)以其独特的优势获得了细致的研究和广泛的应用。主要从混杂原理、介质膜类型、材料系、低维量子点中的应用和器件应用等几个方面来全面分析IFVD 研究和应用现状。
Abstract
With the discovery of quantum well intermixing (QWI), it has made tremendous progress over the past few years. Among all the approaches of QWI, meticulous researches and wide range of applications are acquired in impurity free vacancy disordering (IFVD) owing to its unique merits. Present status of IFVD research and application is comprehensively analyzed from the aspect of theory, dielectric films, materials, quantum dots and applications.
参考文献

[1] Nguyen Hong Ky, J D Ganiere, M Gaihanou, et al.. Self-interstitial mechanism for Zn diffusion-induced disording of GaAs/AlxGa1-xAs (x=0.1-1) multiple quantum well structures[J]. J Appl Phys, 1993, 73(8): 3769-3781.

[2] Zheng Kai, Lin Tao, Jiang Li, et al.. High power red-light GaInP/AlGaInP laser diodes with nonabsorption windows based on Zn diffusion-induced quantum well intermixing[J]. Chin Opt Lett, 2006, 4(1): 27-29.

[3] P J Poole, M Dabies, M Dion, et al.. The fabrication of a broad-spectrum light-emitting diode using high-energy ion implantation[J]. IEEE Photon Technol Lett, 1996, 8(9): 1145-1147.

[4] R Lai, J Pamulapati, P K Bhattacharya, et al.. Low-loss, single mode In0.53Ga0.47As/In0.52Al0.48As/InP optical waveguides fabricated by Zn-induced impurity-induced layer disordering[J]. J Appl Phys, 1991, 70(9): 5136-5137.

[5] G B Morrison, J W Raring, C S Wang. Electroabsorption modulator performance predicted from band-dege absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures[J]. Solid State Electron, 2007, 51(1): 38-47.

[6] Gregory B Tait, David B Ameen. Barrier-inhanced InGaAs/InAlAs photodetectors using quantum-well intermixing[J]. Solid-State Electron, 2004, 48(10-11): 1783-1790.

[7] H S Djie, T Mei, Plasma-induced quantum well intermixing for universal high-density photonic integration[J]. J Crys Growth, 2006, 288(1): 49-52.

[8] Y Wang, H S Djie, B S Ooi, et al.. Interdiffusion effect on quantum-well structures grown on GaSb substrate[J]. Thin Solid Films, 2007, 515(10): 4352-4355.

[9] D H Zhang, L Sun, S F Yoon. Doping effect on the intermixing in GaInAsP/InP multiple quantum well structures grown using all solid sources[J]. J Crys Growth, 2004, 268(3): 401-405.

[10] S Dhamodaran, G Devaraju, A P Pathak, et al.. Ion beam modification studies of InP based multi quantum wells[J]. Nucl Instrum Meth B, 2008, 266(8): 1810-1815.

[11] J Zhao, J Chen, Z C Feng, et al.. Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing[J]. Thin Solid Films, 2006, 498(1-2): 179-182.

[12] J E Epler, R D Burnham, R L Thornton, et al.. Laser induced disordering of GaAs-AlGaAs superlattice and incorporation Si impurity[J]. Appl Phys Lett, 1986, 49(21): 1447-1449.

[13] D Nie, T Mei, H S Djie, et al.. Analysis of inductively coupled argon plasma-enhanced quantum-well intermixing process for multiple bandgap implementation[J]. J Crys Growth, 2006, 288(1): 32-35.

[14] Frank F C, Turnbull D. Mechanism of diffusion of copper in germanium[J]. Phys Rev, 1956, 104(3): 617-618.

[15] Gosele U, Morehead F. Diffusion of zinc in gallium arsenide: a new model[J]. J Appl Phys, 1981, 52(7): 4617-4619

[16] C J Frosch, L Derick. Surface protection and selective masking during diffusion in silicon[J]. J Electrochem Soc, 1957, 104(9): 547-552.

[17] Mclean C J, Marsh J H, Delarue R M, et al.. Layer selective disordering by photoabsorption induced thermal diffusion in InGaAs/InP based multiquantum well structures[J]. Electron Lett, 1992, 28(12): 1-117.

[18] Qiao Zhongliang, Tang Xiaohong, Lee EngKian Kenneth, et al.. Large energy band-gap tuning of 980 nm InGaAs/InGaAsP quantum well structurevia quantum well intermixing[J]. Solid State Electron, 2013, 79: 281-284.

[19] L Fu, R W v d Heijden, H H Tan, et al.. Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers[J]. Appl Phys Lett, 2002, 80(7): 1171-1173.

[20] E V K Rao, A Hamoudi, Ph Krauz, et al.. New encapsulant source for III-V quantum well disordering[J]. Appl Phys Lett, 1995, 66(4): 472-474.

[21] Cusumano P, Ooi B S, HelmySaher, et al.. Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer[J]. J Appl Phys, 1997, 81(5): 2445-2447.

[22] Peng Jucun, Wu Boying, Chen Jie, et al.. Plasma-enhanced chemical vapor deposition SiO2 film after ion implantation induces quantum well intermixing[J]. Journal of Wuhan University of Technology, 2006, 21(4): 105-107.

[23] H J Chang, E Y Lin, K Y Chuang, et al.. Quantum well intermixing in InGaAs/InGaAlAs structures by using ICP-RIE and SiO2 sputtering[C]. International Conference on Indium Phosphide and Related Materials, 2007.

[24] Zhang Jing, Lu Yu, Wang Wei. Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation[J]. Chinese Journal of Semiconductors, 2003, 24(8): 785-788.

[25] V Hongpinyo, Y H Ding, C E Dimas, et al.. Intermixing of InGaAs/GaAs quantum well using multiple cycles annealing [C]. Singapore: IEEE Photonics Global, 2008.

[26] Hofstetter D, Zappe H P, Epler J E, et al.. Multiple wavelength Fabry-Perot lasers fabricated by vacancy-enhanced quantum well disordering[J]. Appl Phys Lett, 1995, 67(14): 1978-1980.

[27] Boon SiewOoi, K McIlvaney, Michael W Street, et al.. Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion[J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1784-1793.

[28] 周路, 薄报学, 王云华, 等. 基于无杂质空位混杂法制备带有无吸收窗口的940 nm GaInP/GaAsP/GaInAs 半导体激光器研究[J]. 中国激光, 2012, 39(8): 0802001.

    Zhou Lu, Bo Baoxue, Wang Yunhua, et al.. Study of 940 nm semiconductor lasers with non-absorb window structure fabricated by impurity-free vacancy disordering[J]. Chinese J Lasers, 2012, 39(8): 0802001.

[29] 杨格丹, 王永晨, 赵杰, 等. 一种增强量子阱混合的新技术[J]. 光子技术, 2004, 3(5): 132-155.

    Yang Gedan, Wang Yongchen, Zhao Jie, et al.. A new technology of enhancing quantum well intermixing[J]. Photon Technology, 2004, 3(5): 132-155.

[30] Tao Lin, Haoqing Zhang, Hang Sun, et al.. Impurity free vacancy diffusion induced quantum well intermixing based on hafnium dioxide films[J]. Mater Sci Semicon Proc, 2015, 29: 150-154.

[31] B L Weiss, Y Chan, W C Shiu, et al.. The electro-optic properties of interdiffused InGaAs/InP quantum well structures [J]. J Appl Phys, 2000, 88(6): 3418-3425.

[32] H S Djie, C K F Ho, T Mei, et al.. Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure[J]. Appl Phys Lett, 2005, 86(8): 081106.

[33] J Zhao, Z C Feng, Y C Wang, et al.. Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering[J]. Surf Coat Technol, 2006, 200(10): 3245-3249.

[34] Gordon B Morrison, Erik J Skogen, Chad S Wang, et al.. Photocurrent spectroscopy for quantum-well intermixed photonic integrated circuit design[J]. IEEE Photon Technol Lett, 2005, 17(7): 1414-1416.

[35] O Hulko, D A Thompson, B J Robinson, et al.. Quantum well intermixing of a quantum well structure grown on an InAsP metamorphic pseudo substrate on InP[J]. J Appl Phys, 2009, 105(7): 073507.

[36] 黄晓东, 黄德修, 刘雪峰. SiO2膜增强InGaAsP 超晶格外延片的量子阱混合[J]. 半导体学报, 2000, 21(11): 1107-1110.

    Huang Xiaodong, Huang Dexiu, Liu Xuefeng. SiO2 encapsulant enhanced quantum well intermixing for InGaAsP superlattice[J]. Chinese Journal of Semiconductors, 2000, 21(11): 1107-1110.

[37] 韩德俊, 朱洪亮, J G Simmons, 等. 二氧化硅覆盖退火增强磷化铟基体激光器材料的量子阱混合[J]. 半导体学报, 1999, 20(3): 231-236.

    Han Dejun, Zhu Hongliang, J G Simmons, et al.. Silicon dioxide encapsulated anneal enhanced quantum well Intermixing for InP based laser material[J]. Chinese Journal of Semiconductors, 1999, 20(3): 231-236.

[38] D A May-Arrioja, N Bickel, M Torres-Cisneros, et al.. Intermixing properties of InP-Based MQW′ s[C]. IEEE/LEOS Summer Topical Meetings, 2008. 41.

[39] S c Du, L Fu, H H Tan, et al.. Study of intermixing mechanism in AlInGaAs/InGaAs quantum well[C]. Optoelectronic and Microelectronic Materials and Devices, 2010. 47-48.

[40] Ch Heyn, A Schramm, T Kipp, et al.. Kinetic model of intermixing during self-assembled InAs quantum dot formation [J]. J Crys Growth, 2007, 301-302: 692-696.

[41] T C Hsu, T E Tzeng, E Y Lin, et al.. Blue-shift emission in InP-based quantum dots by SiO2 sputtering and rapid thermal annealing[J]. J Crys Growth, 2009, 311(7): 1787-1790.

[42] C K Chia, S J Chua, Y J Wang, et al.. Impurity free vacancy disordering of InAs/GaAs quantum dot and InAs/InGaAs dot-in-a-well structures[J]. Thin Solid Films, 2007, 515(7-8): 3927-3931.

[43] P Lever, H H Tan, C Jagadish. Impurity free vacancy disordering of InGaAs quantum dots[J]. J Appl Phys, 2004, 96(12): 7544-7548.

[44] I McKerracher, J Wong-Leung, G Jolley, et al.. Spectral tuning of InGaAs/GaAs quantum dot infrared photodetectors using selective-area intermixing[C]. Optoelectronic and Microelectronic Materials and Devices, 2010. 49-50.

[45] Ian McKerracher, Jenny Wong-Leung, Greg Jolley, et al.. Selective intermixing of InGaAs/GaAs quantum dot infrared photodetectors[J]. IEEE J Quantum Electron, 2011, 47(5): 577-590.

[46] 马文全, 杨晓杰, 种明, 等. InGaAs/GaAs量子点红外探测器[J]. 红外与激光工程, 2008, 37(1): 34-36.

    Ma Wenquan, Yang Xiaojie, Zhong Ming, et al.. InGaAs/GaAs quantum dot infrared photodetector[J]. Infrared and Laser Engineering, 2008, 37(1): 34-36.

[47] 马骁宇, 王俊, 刘素平. 国内大功率半导体激光器研究及应用现状[J]. 红外与激光工程, 2008, 37(2): 189-194.

    Ma Xiaoyu, Wang Jun, Liu Suping. Present situation of investigations and applications in high power semiconductor lasers[J]. Infrared and Laser Engineering, 2008, 37(2): 189-194.

[48] B W Hakki, F R Nash. Catastrophic failure in GaAs double-heterostructure injection lasers[J]. J Appl Phys, 1974, 45(9): 3907-3912.

[49] 郑晓刚, 李特, 芦鹏, 等. 980 nm 半导体激光器腔面温度特性分析[J]. 中国激光, 2013, 40(11): 1102004.

    Zheng Xiaogang, Li Te, Lu Peng, et al.. Analysis of temperature characteristics of 980 nm semiconductor laser facet[J]. Chinese J Lasers, 2013, 40(11): 1102004.

[50] 刘斌, 刘媛媛, 崔碧峰. 980 nm 半导体激光器长期老化结果及失效分析[J]. 激光与光电子学进展, 2012, 49(9): 091404.

    Liu Bin, Liu Yuanyuan, Cui Bifeng. Long term aging and failure analysis for 980nm laser diodes[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091404.

[51] Y Ueno, K Endo, H Fujii, et al.. Continuous-wave high-power (75 mW) operation of a transverse-mode stabilised window-structure 680 nm AlGaInP visible laser diode[J]. Electron Lett, 1990, 26(20): 1726-1728.

[52] S D McDougall, M L Lubber, O P Kowalski, et al.. GaAs/AlGaAs waveguide pin photodiodes with non-absorbing input facets fabricated by quantum well intermixing[J]. Electron Lett, 2000, 36(8): 749-750.

[53] 徐遵图, 徐俊英, 杨国文, 等. 量子阱天序的窗口结构InGaAs/GaAs/AlGaAs 量子阱激光器[J]. 中国激光, 1998, 25(12): 1078-1082.

    Xu Zuntu, Xu Junying, Yang Guowen, et al.. InGaAs/GaAs/AlGaAs strained quantum well lasers with window regions fabricated by impurity-free vacancy disordering[J]. Chinese J Lasers, 1998, 25(12): 1078-1082.

[54] Lu Zhou, Xin Gao, Liuyang Xu, et al.. InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering[J]. Solid State Electronics, 2013, 89: 81-84.

[55] E Herbert Li, Advances in intermixed quantum well devices[C]. Electron Devices Meeting, 1998. 60-65.

[56] Chunling Liu, Xueyi Hou, Yanping Yao. The principle experiment of AlN used as a non-absorbing window material of LDs[J]. Advanced Material Research, 2012, 510: 446-450.

[57] 张灿, 朱洪亮, 梁松, 等. 采用IFVD-QWI 技术制备电吸收调制DFB 激光器[J]. 光电子·激光, 2013, 24(8): 1451-1455.

    Zhang Can, Zhu Hongliang, Liang Song, et al.. Electroabsorption modulated DFB lasers fabricated by IFVD-QWI technology[J]. Journal of Optoelectronics·Laser, 2013, 24(8): 1451-1455.

[58] Zhang Jing, Li Baoxia, Zhao Lingjuan, et al.. A wavelength tunable DBR laser integrated with an electro-absorption modulator by a combined method of SAG and QWI[J]. Chinese Journal of Semiconductors, 2005, 26(11): 2053-2057.

[59] Chad S Wang, Yu-Chia Chang, Uppili Krishnamachari, et al.. Short-cavity 980 nm DBR lasers with quantum well intermixed integrated high-speed EA modulators[J]. IEEE J Sel Top Quant, 2007, 13(5): 1151-1156.

[60] Daniel Hofstetter, Bernd Maisenholder, Hans P Zappe. Quantum-well intermixing for fabrication of lasers and photonic integrated circuits[J]. IEEE J Sel Top Quant, 1998, 4(4): 794-802.

[61] Yuta Sugawara, Tomoyuki Miyamoto. Quantum Structure Intermixing for Small Vertical-Cavity Surface-Emitting Laser [OL]. http://ieeexplore. ieee.org/stamp/stamp.jsp arnumber=4634520.[2015-1-23].

[62] C L Walker, A C Bryce, J H Marsh. High brightness single-mode ridge laser utilizing buried heterostructure defined by quantum-well intermixing[J]. IEEE Photon Technol Lett, 2002, 14(10): 1391-1393.

[63] F Robert, A C Bryce, J H Marsh, et al.. Passive mode locking of InAlGaAs 1.3-μm strained quantum wells extended cavity laser fabricated by quantum well intermixing[J]. IEEE Photon Technol Lett, 2004, 16(2): 374-376.

[64] Lu Yu, Zhang Jing, Wang Wei, et al.. Wavelength tuning in the two-section distributed bragg reflector laser fabricated by quantum-well intermixing[J]. Chinese Journal of Semiconductors, 2003, 24(9): 903-906.

[65] H Y Wong, M Sorel, A C Bryce, et al.. Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing[J]. IEEE Photon Technol Lett, 2005, 17(4): 783-785.

[66] Jongbum Nah, Patrick LiKamWa. Quantum wells intermixing in InGaAsP/InGaAsP laser structure for photonic integrated circuits[C]. Quantum Electronics and Laser Science Conference, 2005. 1257.

林涛, 孙航, 张浩卿, 林楠, 马骁宇, 王勇刚. 无杂质空位诱导量子阱混杂研究及应用现状[J]. 激光与光电子学进展, 2015, 52(3): 030003. Lin Tao, Sun Hang, Zhang Haoqing, Lin Nan, Ma Xiaoyu, Wang Yonggang. Present Status of Impurity Free Vacancy Disordering Research and Application[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!