中国激光, 2014, 41 (6): 0602002, 网络出版: 2014-04-09   

相干合成中基于SPGD算法的平移误差和倾斜误差控制

Error Control of Piston and Tilt Based on SPGD in Coherent Beam Combination
母杰 1,2,*景峰 1,2王逍 1,2朱启华 1,2李志林 1,2,3张军伟 1,2
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 等离子体物理重点实验室, 四川 绵阳 621900
3 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
摘要
随机并行梯度下降算法(SPGD)是控制多路激光束的相位锁定,实现相干合成的一种有效方式。在分析平移误差和倾斜误差对相干合成(CBC)影响的基础上,建立2×2排布的光束模型探讨了该算法中的增益系数和扰动幅值对平移误差和倾斜误差控制的影响,并对增益系数的优化进行了分析。研究结果表明,要提高相干合成的效果,必须同时校正平移误差和倾斜误差;随着增益系数和扰动幅值的增加,SPGD算法的收敛速度加快,但计算精度降低,系统会发生振荡;自适应更新增益系数是一种有效的参数优化方式,可很好平衡算法收敛速度和计算精度问题。为大型固体短脉冲激光装置中基于SPGD算法进行相干合成研究提供了理论参考。
Abstract
Stochastic parallel gradient descent (SPGD) is an effective way to achieve multi-channel phase-locked laser beams for coherent beam combination (CBC). In this paper, the influence of piston error and tilt error on CBC is primarily presented. Then, an arrangement model of 2×2 laser beams is built. With this proposed model, SPGD is tested and verified. Key parameters, the gain coefficient and the disturbance amplitude, impacts on the error control performance of the algorithm, are analyzed and optimized. The surveys show that it is necessary to control piston error and tilt error for CBC. When SPGD is used to correct the above errors, the convergence speed of the algorithm is improved with the increase of the gain coefficient and the disturbance amplitude, however, the accuracy of SPGD is reduced and the system is vibrated. In order to improve CBC, the adaptive gain coefficient is studied. Compared with the fixed gain coefficient, the adaptive gain coefficient is able to make a good balance between the convergence speed and the accuracy of the algorithm, which indicates that the adaptive gain coefficient is an effective optimization way. These results in this paper provide a theoretical reference for CBC using SPGD in a large short-pulse laser facility.
参考文献

[1] 程勇, 刘洋, 许立新. 激光相干合成技术研究新动向[J]. 红外与激光工程, 2007, 36(2): 163-166.

    Cheng Yong, Liu Yang, Xu Lixin. Recent progresses and development of fiber laser combining technology[J]. Infrared and Laser Engineering, 2007, 36(2): 163-166.

[2] Richardson D J, Nilsson J, Clarkson W A. High power fiber laser: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[3] 刘泽金, 侯静, 许晓君, 等. 激光相干合成的研究进展[J]. 中国激光, 2009, 36(11): 2773-2779.

    Liu Zejin, Hou Jing, Xu Xiaojun, et al.. Research progress of laser beam combining[J]. Chinese J Lasers, 2009, 36(11): 2773-2779.

[4] K L Baker, D Homoelle, S M Utterback, et al.. Phasing rectangular apertures[J]. Opt Express, 2009, 17(22): 19551-19565.

[5] N Miyanaga, H Azechi, K A Tanaka, et al.. Technological challenge and activation of high-energy PW laser LFEX[C]. Conf on Lasers and Electro-Optics/Pacific Rim, 2007: MA2_1.

[6] Alexander N, Amiranoff F, Aguer P, et al.. High power laser energy research facility: technical background and conceptual design[R]. RAL-TR-2007-008, 2007.

[7] 周朴, 王小林, 马阎星. 随机并行梯度下降算法实现16路光纤激光相位锁定[J]. 中国激光, 2010, 37(2): 367-369.

    Zhou Pu, Wang Xiaolin, Ma Yanxing, et al.. Phase locking of sixteen laser beams using stochastic parallel gradient descent algorithm[J]. Chinese J Lasers, 2010, 37(2): 367-369.

[8] 粟荣涛, 周朴, 王小林, 等. 光纤激光相干合成高速高精度相位控制器[J]. 强激光与粒子束, 2012, 24(6): 1290-1294.

    Su Rongtao, Zhou Pu, Wang Xiaolin, et al.. High-speed high-precision phase controller for coherent beam combining of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(6): 1290-1294.

[9] Gregory D Goodno, Charles P Asman, Jesse Anderegg, et al.. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE J Sel Top Quantum Electron, 2007, 13 (3): 460-472.

[10] T M Shay, J T Baker, C A Robin, et al.. Electronic beam combination of fiber amplifier arrays[C]. Frontiers in Optics Optical Society of America, 2008, FWG1.

[11] M A Vorontsov, G W Carhart, M Cohen, et al.. Adaptive optics based in analog parallel stochastic optimization: analysis and experimental demonstration[J]. J Opt Soc Am A, 2000,17(8): 1440-1453.

[12] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt Lett, 1997, 22(12): 907-909.

[13] 梁永辉, 王三宏, 龙学军, 等. 随机并行梯度下降光束净化实验研究[J]. 光学学报, 2008, 28(4): 613-618.

    Liang Yonghui, Wang Sanhong, Long Xuejun, et al.. Experimental explorations of the laser beam cleanup system based on stochastic parallel-gradient-descent algorithm[J]. Acta Optica Sinica, 2008, 28(4): 613-618.

[14] 韩金凤, 李晓峰. 基于随机并行梯度下降算法的光通信相位控制[OL]. 中国科技论文在线, 2012, [2014-3-5]. http://www.paper.edu.cn/releasepaper/content/201203-636.

[15] Ling Liu. Analysis and Experimental Demonstration of Conformal Adaptive Phase-Locked Fiber Array for Laser Communications and Beam Projection Applications[D]. Maryland: University of Maryland at College Park, 2008. 83-94.

母杰, 景峰, 王逍, 朱启华, 李志林, 张军伟. 相干合成中基于SPGD算法的平移误差和倾斜误差控制[J]. 中国激光, 2014, 41(6): 0602002. Mu Jie, Jing Feng, Wang Xiao, Zhu Qihua, Li Zhilin, Zhang Junwei. Error Control of Piston and Tilt Based on SPGD in Coherent Beam Combination[J]. Chinese Journal of Lasers, 2014, 41(6): 0602002.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!