红外与激光工程, 2016, 45 (5): 0531002, 网络出版: 2016-06-12  

外部测量装置的捷联惯导对准方法

Alignment of strapdown inertial navigation system based on extra measuring device
作者单位
1 天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
2 军械工程学院 光学与电子工程系, 河北 石家庄 050003
摘要
在室内组合定位系统中, 不同子系统之间相互姿态关系的确定是通过对准过程实现的。使用惯性器件进行组合定位, 通常航姿参考系统AHRS是以地理坐标系(E-N-U)作为导航坐标系。然而, 在室内导航任务中, 导航坐标系一般根据用户需求建立在厂内标志点或工装坐标系等自定义位置。针对这一问题, 提出一种将地理坐标系与自定义坐标系相互转换的新方法, 通过激光跟踪仪建立的外部基准, 提出了基于方向余弦矩阵的标定算法, 实现了地理坐标系与外部参考坐标系之间的相互转换。实验结果表明: AHRS任意位姿下的转换姿态角度均方根误差小于0.25°。
Abstract
In an integrated location system, the establishment of mutual attitude relationships between different subsystems is accomplished by the alignment processing. When the inertial component is used for positioning, the attitude and heading reference system(AHRS) is generally based on geographic coordinate system(E-N-U) as the navigation coordinate system. However, during indoor navigation task, the navigation coordinate system is generally based on the users′ requirement such as marked points or workpiece coordinate system. In this paper a new alignment method based on direction cosine matrix was proposed for the integrated positioning system of indoor mobile object. The transformation between geographic coordinate system and external reference coordinate system can be achieved by the method.Then coordinate system of laser tracker became navigation reference and real-time and precise transformation between different coordinate systems can be realized by this new alignment method.Experimental results show that the measured RMS errors for attitude angles after transformation are less than 0.25° while the AHRS is in arbitrary position and orientation.
参考文献

[1] Oleari F, Magnani M, Ronzoni D. Industrial AGVs: toward a pervasive diffusion in modern factory ware houses[C]//2014 IEEE International Conference on Intelligent Computer Communication and Processing, 2014: 233-238.

[2] Yuan Beijiang, Chen Dongdong, Wang Tianmiao. AGV system based on multi-sensor information fusion [C]//2014 International Symposium on Computer, Consumer and Control, 2014: 900-5.

[3] 韩璐, 景占荣, 段哲民. 采用激光陀螺/GPS的导弹组合定姿系统[J]. 红外与激光工程, 2011, 40(5): 915-920.

    Han Lu, Jing Zhanrong, Duan Zhemin. Laser gyro/GPS integrated attitude estimation systemfor ballistic missile[J]. Infrared and Laser Engineering, 2011, 40(5): 915-920. (in Chinese)

[4] 黄远, 王可东, 刘宝. 机动天基平台惯性/天文导航组合模式研究[J]. 红外与激光工程, 2012, 41(6): 1622-1528.

    Huang Yuan, Wang Kedong, Liu Bao. INS/CNS integration schemes for a maneuvering spacecraft[J]. Infrared and Laser Engineering, 2012, 41(6): 1622-1528. (in Chinese)

[5] 秦永元. 惯性导航(第二版)[M]. 北京: 科学出版社, 2014.

    Qin Yongyuan. Inertial Navigation II[M]. Beijing: Scinces Press, 2014. (in Chinese)

[6] Tazartes D. An historical perspective on inertial navigation systems[C]//2014 IEEE International Symposium on Inertial Sensors and Systems, 2014, 12: 25-26.

[7] 张广军. 视觉测量[M]. 北京: 科学出版社, 2008.

    Zhang Guangjun. Vision Measurement[M]. Beijing: Science Press, 2008. (in Chinese)

[8] 崔凯, 刘朝晖, 李治国, 等. 坐标变换在空间望远镜误差标定中的应用[J]. 红外与激光工程, 2014, 43(S): 151-156.

    Cui Kai, Liu Zhaohui, Li Zhiguo, et al. Calibrating tracing errors for space-used telescopeby coordinate transformation[J]. Infrared and Laser Engineering, 2014, 43(S): 151-156. (in Chinese)

[9] 张博, 魏振忠, 张广军. 机器人坐标系与激光跟踪仪坐标系的快速转换方法[J]. 仪器仪表学报, 2010, 31(9): 1986-1990.

    Zhang Bo, Wei Zhenzhong, Zhang Guangjun. Rapid coordinate transformation between a robot and a laser tracker[J]. Chinese Journal of Scientific Instrument, 2010, 31(9): 1986-1990. (in Chinese)

洪天琦, 黄喆, 杨凌辉, 郭思阳, 邹剑, 叶声华. 外部测量装置的捷联惯导对准方法[J]. 红外与激光工程, 2016, 45(5): 0531002. Hong Tianqi, Huang Zhe, Yang Linghui, Guo Siyang, Zou Jian, Ye Shenghua. Alignment of strapdown inertial navigation system based on extra measuring device[J]. Infrared and Laser Engineering, 2016, 45(5): 0531002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!