发光学报, 2014, 35 (7): 761, 网络出版: 2014-07-22  

AlGaN合金中局域态和极化电场的竞争机制

Competition Mechanism of Local State-internal Polarization Electric Field in Algan Alloy
作者单位
中国科学院半导体研究所 半导体材料科学重点实验室 低维半导体材料与器件北京市重点实验室, 北京 100083
摘要
通过MOVPE方法生长了不同Al组分的3块AlxGa1-xN样品, 利用稳态光谱和时间分辨光谱对其样品的光学特性进行了分析。鉴于影响氮化物发光性质的极化电场或局域态的单一机制不能充分解释我们的实验现象, 提出了局域态-内部极化电场竞争的机制。通过对实验数据的分析, 得出如下重要结论: 样品PL峰位蓝移的温度起点基本对应于局域态和极化电场起作用的交替点, PL峰位发生蓝移的温度起点与光强-温度曲线的斜率出现明显变化的温度点一致; 随着温度的升高, 若AlGaN合金样品中PL峰位存在二次蓝移, 则说明样品中电场分布不均匀。
Abstract
Three AlxGa1-xN samples were grown by metal organic chemical vapor phase deposition (MOCVD), and their optical properties were analyzed by the steady-state and time-resolved photoluminescence (PL) techniques. In view of the fact that the experimental phenomena cant be fully explained by a single mechanism of polarization electric field or that of local state, which remarkably influence luminescent properties of nitrids, the competition mechanism between local state and internal polarization electric field was proposed. By analyzing the experimental data, two crucial conclusions are drawn. First, the temperature starting point of PL peak blue-shift basically corresponds to the shift point between the effect of local state and the effect of polarization electric field. The temperature starting point of PL peak blue-shift is well consistent with the temperature point where the slope of illuminant intensity-temperature curve changes significantly. Then, there is non-uniform polarization electric field distribution in the sample if the PL peak has two blue-shifts with the temperature increasing in AlGaN alloy.
参考文献

[1] Nakarmi M L, Nepal N, Lin J Y, et al. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys [J]. Appl. Phys. Lett., 2009, 94(9):091903-1-3.

[2] Narukawa Y, Kawakami Y, Funato M, et al. Role of self-formed InGaN quantum dots for exciton localization in the spatially resolved cathodoluminescence spectra of InGaN quantum wells in the purple laser diode emitting at 420 nm [J]. Appl. Phys. Lett., 1997, 70(8):981-983.

[3] Chichibu S, Wada K, Nakamura S. Spatially resolved cathodoluminescence spectra of InGaN quantum wells [J]. Appl. Phys. Lett., 1997, 71(16):2346-2348.

[4] Carlo A D, Sala F D, Lugli P, et al. Doping screening of polarization fields in nitride heterostructures [J]. Appl. Phys. Lett., 2000, 76(26):3950-3952.

[5] Srinivasan B A, Plumlee C, Omiya H, et al. Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1-xN layers [J]. J. Appl. Phys., 2004, 95(9):4670-4674.

[6] Nepal N, Li J, Nakarmi M L, et al. Exciton localization in AlGaN alloys [J]. Appl. Phys. Lett., 2006, 88(6):062103-1-3.

[7] Cho Y H, Gainer G H, Lam J B, et al. Dynamics of anomalous optical transitions in AlxGa1-xN alloys [J]. Phys. Rev. B, 2000, 61(11):7203-7206.

[8] Onuma T, Chichibu S F, Uedono A, et al. Radiative and nonradiative processes in strain-free AlxGa1-xN films studied by time-resolved photoluminescence and positron annihilation techniques [J]. J. Appl. Phys., 2004, 95(5):2495-2504.

[9] Kazlauskas K, Ukauskas A, Tamulaitis G, et al. Exciton hopping and nonradiative decay in AlGaN epilayers [J]. Appl. Phys. Lett., 2005, 87(17):172102-1-3.

[10] Li J, Nam K B, Lin J Y, et al. Optical and electrical properties of Al-rich AlGaN alloys [J]. Appl. Phys. Lett., 2001, 79(20):3245-3247.

[11] Steude G, Meyer B K, Goldner A, et al. Optical investigations of AlGaN on GaN epitaxial films [J]. Appl. Phys. Lett., 1999, 74(17):2456-2458.

[12] Lee K B, Parbrook P J, Wang T, et al. Optical investigation of exciton localization in AlxGa1-xN [J]. J. Appl. Phys., 2007, 101(5):053513-1-6.

[13] Tansu N, Arif R A, Zhao H P, et al. Polarization engineering of iii-nitride nanostructures for high-efficiency light emitting diodes [J]. SPIE, 2008, 70:705812-1-12.

[14] Wan S P, Xia J B, Chang K. Effects of piezoelectricity and spontaneous polarization on electronic and optical properties of wurtzite Ⅲ-Ⅴ nitride quantum wells [J]. J. Appl. Phys., 2001, 90(12):6210-6216.

[15] Wierer J J, Fischer A J, Koleske D D. The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices [J]. Appl. Phys. Lett., 2010, 96(5):051107-1-3.

[16] Schwarz U T, Braun H, Kojima K, et al. Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells [J]. Appl. Phys. Lett., 2007, 91(12):123503-1-3.

[17] Chichibu S F, Abare A C, Minsky M S, et al. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multi quantum well structures [J]. Appl. Phys. Lett., 1998, 73(14):2006-2009.

[18] Nam K B, Nakarmi M L, Lin J Y, et al. Deep impurity transitions involving cation vacancies and complexes in AlGaN alloys [J]. Appl. Phys. Lett., 2005, 86(22):222108-1-3.

[19] Zhang J, Kuokstis E, Fareed Q, et al. Pulsed atomic layer epitaxy of quaternary AlInGaN layers [J]. Appl. Phys. Lett., 2001, 79(1):925-927.

[20] Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures [J]. J. Appl. Phys., 1999, 85(6):3222-3233.

[21] Takeuchi, Sota S, Katsuragawa M, et al. Quantum-confined Stark effect due to piezoelectric field in GaInN strained quantum wells [J]. Jpn. J. Appl. Phys., 1997, 36:L382-L385.

[22] Bernardini F, Fiorentini V. Spontaneous polarization and piezoelectric constants of Ⅲ-V nitrides [J]. Phys. Rev. B, 1997, 56(16):R10024-R10027.

[23] Lai Z Y. Polarization Field Effects on Group Ⅲ-nitride Semiconductors [D]. Taoyuan: National Central University, 2003.

[24] Ambacher O. Growth and applications of group Ⅲ-nitrides [J]. J. Phys. D: Appl., 1998, 31:2653-2710.

[25] Riblet P, Hirayama H, Kinoshita A, et al. Determination of photoluminescence mechanism in InGaN quantum wells [J]. Appl. Phys. Lett., 1999, 75(1):2241-2243.

[26] Kuokstis E, Sun W H, Chen C Q, et al. Internal polarization fields in GaN/AlGaN multiple quantum wells with different crystallographic orientations [J]. J. Appl. Phys., 2005, 97(10):103719-1-6.

[27] Liuolia V, Marcinkevicˇius S, Lin Y D, et al. Dynamics of polarized photoluminescence in m-plane InGaN/GaN quantum wells [J]. J. Appl. Phys., 2010, 108(2):023101-1-7.

[28] Pozina G, Hemmingsson C, Forsberg U, et al. Time-resolved photoluminescence properties of AlGaN/AlN/GaN high electron mobility transistor structures grown on 4H-SiC substrate [J]. J. Appl. Phys., 2008, 104(11):113513-1-5.

[29] Kazlauskas K, Tamulaitis G, ukauskas A, et al. Exciton and carrier motion in quaternary AlInGaN [J]. Appl. Phys. Lett., 2003, 82(45):4501-4503.

[30] Pan X, Wang X L, Xiao H L, et al. Characteristics of high Al content AlGaN grown by pulsed atomic layer epitaxy [J]. Appl. Surf. Sci., 2011, 257:8718-8721.

[31] Viňa L, Logothetidis S, Cardona M. Temperature dependence of the dielectric function of germanium [J]. Phys. Rev. B, 1984, 30(4):1979-1991.

[32] Singh M. Magneto-optics of semiconductors with double-hump and nonparabolic band structures [J]. Phys. Rev. B, 1987, 35(18):9714-9721.

[33] Li C F, Huang Y S, Malikova L, et al. Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN [J]. Phys. Rev. B, 1997, 55(15):9251-9254.

[34] Li J, Nam K B, Nakarmi M L, et al. Band structure and fundamental optical transitions in wurtzite AlN [J]. Appl. Phys. Lett., 2003, 83(25):5163-5165.

[35] Bergman J P, Lundstrm T, Monemar B, et al. Photoluminescence related to the two dimensional electron gas at a GaN/AlGaN heterointerface [J]. Appl. Phys. Lett., 1996, 69(23):3456-3458.

[36] Cho Y H, Gainer G H, Fischer A J, et al.“S-shaped'” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells [J]. Appl. Phys. Lett., 1998, 73(10):1370-1372.

毛德丰, 金鹏, 李维, 刘贵鹏, 王维颖, 王占国. AlGaN合金中局域态和极化电场的竞争机制[J]. 发光学报, 2014, 35(7): 761. MAO De-feng, JIN Peng, LI Wei, LIU Gui-peng, WANG Wei-ying, WANG Zhan-guo. Competition Mechanism of Local State-internal Polarization Electric Field in Algan Alloy[J]. Chinese Journal of Luminescence, 2014, 35(7): 761.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!