红外与毫米波学报, 2019, 38 (3): 351, 网络出版: 2019-07-20   

对空中弱小目标可探测性的影响

Influence of complex environment on the detectability of weak and small aerial target under space-based observation mode
作者单位
1 哈尔滨工业大学 空间光学工程研究中心, 黑龙江 哈尔滨 150001
2 北京跟踪与通信技术研究所, 北京 100094
3 南京航空航天大学 航天学院, 江苏 南京 210016
摘要
针对天基观测复杂环境下空中弱小目标远程广域探测的需求, 立足于天基光学探测链路, 分析太阳光照、云层及地表等复杂背景环境与目标辐射的相互作用机理, 在此基础上提出影响天基目标光学特性的探测场景环境要素; 然后结合目标的可探测性表征, 分析在不同探测谱段情况下, 不同光照、地表背景类型及云层等复杂环境要素对目标可探测性的影响规律; 最后以某典型目标为例, 结合现有的目标特性认知与理论建模, 分析得出复杂环境要素的影响排序, 并根据目标信杂比随谱段的变化特性, 提出探测谱段的优选建议, 为我国隐身/反隐飞行器设计、探测系统设计及信息处理算法优化提供理论依据与科学指导.
Abstract
Aiming for remote wide-area detection of weak and small aerial target under space-based complex observation conditions, the radiation interaction mechanism of complex background environment, such as solar illumination, clouds and earth surface, and aerial target was analyzed based on the full link of optical detection, and then the main environmental factors that affect the target radiation characteristics were proposed. After that, combined with the detectability characterization, the influence rules of environmental factors, such as different illuminations and various background types, on the target detection performance under different detection spectrum were studied. Finally, by taking a typical target as an example, the influence order of different environmental factors was ranked combined with the existing target characteristics cognition and theoretical modeling, and the detection spectral optimal selection suggestions were given according to the change characteristics of target signal-to-clutter ratio with spectral bands, which provide theoretical basis and scientific guidance for the design of stealth/anti-stealth aircraft, space-based detection system and information processing optimization algorithm.
参考文献

[1] Zikidis K, Skondras A, Tokas C. Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modelling, 2014, 4(1): 129-165.

[2] Song Bo. Development of U.S. space-based space situational awareness system[J]. Space International(宋博. 美国天基空间态势感知系统发展, 国际太空), 2015,(12): 13-20.

[3] Wang S T, Zhang W, Wang Q. Measurement for detectivity of infrared detectors in low temperature background[J]. Optics and Precision Engineering, 2012, 20(3): 484-491.

[4] Wang C, Qin S. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis[J]. Infrared Physics & Technology, 2015, 69:123-135.

[5] Kim S. Analysis of small infrared target features and learning-based false detection removal for infrared search and track[J]. Pattern Analysis and Applications, 2014, 17(4): 883-900.

[6] Dombert P L, Kuhns A, Mengotti P, et al. Functional mechanisms of probabilistic inference in feature-and space-based attentional systems[J]. Neuroimage, 2016, 142:553-564.

[7] Jianwei L, Qiang W. Aircraft-skin infrared radiation characteristics modeling and analysis[J]. Chinese Journal of Aeronautics, 2009, 22(5):493-497.

[8] Rao A G, Mahulikar S P. Effect of atmospheric transmission and radiance on aircraft infared signatures[J]. Journal of aircraft, 2005, 42(4):1046-1054.

[9] Tian C H, Yang B Y, Cai M, et al. Effect of atmospheric background on infrared target detection[J]. Infrared Laser Eng., 2014, 43(2):438-441.

[10] ZHU Han-Lu, LU Fu-Xing, RAO Peng. Analysis of Target Detection Spectrum Based on System Contrast[J], Infrared Technology(朱含露, 陆福星, 饶鹏. 基于系统对比度的目标探测谱段分析. 红外技术), 2018, 1: 013.

[11] HUANG Wei, JI Hong-Hu, LU Hao-Hao. Impact of atmospheric and ground infrared radiation on infrared stealth effect of long-wave band low emissivity of high-flying aircraft[J], Journal of Aerospace Power(黄伟, 吉洪湖, 卢浩浩. 大气及地面红外辐射对高空飞机长波低发射率红外隐身效果的影响. 航空动力学报), 2016,(2): 350-359.

[12] Yoon K B, Park S J, Kim T K. Study on inverse estimation of radiative reflection properties in mid-wavelength infrared region by using the repulsive particle swarm optimization algorithm[J]. Applied optics, 2013, 52(22): 5533-5538.

[13] Li N, Lv Z, Huai W, et al. A simulation method of aircraft plumes for real-time imaging[J]. Infrared Physics & Technology, 2016, 77:153-161.

[14] Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150.

[15] Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote sensing of Environment, 2002, 83(1-2):135-148.

[16] Fuzzi S, Andreae M O, Huebert B J, et al. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change[J]. Atmospheric Chemistry and Physics, 2006, 6(7): 2017-2038.

[17] Berk A, Bernstein L S, Anderson G P, et al. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS[J]. Remote sensing of Environment, 1998, 65(3):367-375.

[18] LIU Zun-Yang, SHAO Li, WANG Ya-Fu, et al. A band selection method for infrared warning satellites based on radiation flux apparent contrast spectrum[J], J. Infrared Millim. Waves(刘尊洋, 邵立, 汪亚夫, 等. 基于辐射通量表观对比度光谱的红外预警卫星探测谱段选择方法. 红外与毫米波学报), 2014, 33(5): 492-497.

胡建明, 乔凯, 智喜洋, 张寅, 巩晋南, 陈文彬. 对空中弱小目标可探测性的影响[J]. 红外与毫米波学报, 2019, 38(3): 351. HU Jian-Ming, QIAO Kai, ZHI Xi-Yang, ZHANG Yin, GONG Jin-Nan, CHEN Wen-Bin. Influence of complex environment on the detectability of weak and small aerial target under space-based observation mode[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 351.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!