中国光学, 2015, 8 (5): 806, 网络出版: 2015-11-30   

Mn 掺杂ZnSe 量子点变温发光性质研究

Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots
作者单位
1 吉林师范大学功能材料物理与化学教育部重点实验室,吉林四平 136000
2 宁波工程学院机械工程学院,浙江宁波 315016
摘要
量子点(QD)照明器件中电流导致的焦耳热会使其工作温度高于室温?因此研究量子点的发光热稳定性十分重要。本文利用稳态光谱和时间分辨光谱研究了具有不同壳层厚度的Mn掺杂ZnSe(Mn:ZnSe)量子点的变温发光性质, 温度范围是80~500 K。实验结果表明, 厚壳层(65单层(MLs))Mn∶ZnSe量子点的发光热稳定性要优于薄壳层(26 MLs)的量子点。从80 K升温到400 K的过程中, 厚壳层Mn∶ZnSe量子点的发光几乎没有发生热猝灭, 发光量子效率在400 K高温下依然可以达到60%。通过对比Mn∶ZnSe量子点的变温发光强度与荧光寿命, 对Mn∶ZnSe量子点发光热猝灭机制进行了讨论。最后, 为了研究Mn∶ZnSe量子点的发光热猝灭是否为本征猝灭, 对具有不同壳层厚度的Mn∶ZnSe量子点进行了加热-冷却循环(300-500-300 K)测试, 发现厚壳层的Mn∶ZnSe量子点的发光在循环中基本可逆。因此, Mn∶ZnSe量子点可以适用于照明器件, 即使器件中会出现不可避免的较强热效应。
Abstract
Thermal stability of quantum dot(QD) luminescence is considered as an important factor for their applications in luminescent devices because of the Joule heat caused by inevitable current. The temperature-dependent photoluminescence(PL) properties of Mn-doped ZnSe(Mn∶ZnSe) QDs with different shell thickness in the temperature range from 80 to 500 K were studied by steady-state and time-resolved PL spectra. It was found that the Mn∶ZnSe QDs with thick shell(65 monolayers(MLs)) exhibited better PL thermal stability than the thin shell coated ones(26 MLs). Because almost no PL quenching occurred for thick shell-coated Mn-doped QDs from 80 to 400 K, their PL quantum yield(QY) could keep 60% even at 400 K. Moreover, based on the change in temperature-dependent PL intensities and lifetimes of Mn∶ZnSe QDs, the thermal quenching mechanism was proposed. Finally, the stability of Mn∶ZnSe QDs with different shell thickness are discussed on the basis of heating-cooling cycling examination(300-500-300 K). For Mn∶ZnSe QDs with thick shell, the PL was nearly totally recovered after the cycling examination. Thus, Mn∶ZnSe QDs are promising for applications in luminescent devices, where strong thermal effect is inevitable.
参考文献

[1] COE S,WOO W-K,BAWENDI M,et al.. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature,2002,420(6917):800-803.

[2] BOURZAC K. Quantum dots go on display[J]. Nature,2013,493(7432):283.

[3] 娄庆,曲松楠.基于超级碳点的水致荧光“纳米炸弹[J].中国光学,2015,8(1):91-98.

    LOU Q,QU S N. Water triggered luminescent “nano-bombs” based on supra-carbon-nanodots[J]. Chinese Optics,2015,8(1):91-98.(in Chinese)

[4] 付作岭,董晓睿,盛天琦,等.纳米晶体中稀土离子的发光性质及其变化机理研究[J].中国光学,2015,8(1):139-144.

    FU Z L,DONG X R,SHENG T Q,et al.. Luminescene properties and various mechanisms of rara earth ions in the nanocrystals[J]. Chinese Optics,2015,8(1):139-144.(in Chinese)

[5] 陈肖慧,袁曦,华杰,等.壳层相关的CdSe核/壳量子点发光的热稳定性[J].发光学报,2014,35(9):1051-1057.

    CHEN X H,YUAN X,HUA J,et al.. Shell-dependent thermal stability of CdSe core/shell quantum dot photoluminescence[J]. Chinese J. Luminescence,2014,35(9):1051-1057.(in Chinese)

[6] 陈肖慧,王秀英,赵家龙.ZnCuInS量子点的变温光致发光[J].发光学报,2012,33(9):923-928.

    CHEN X H,WANG X Y,ZHAO J L. Temperature-dependent photoluminescence of ZnCuInS quantum dots[J]. Chinese J. Luminescence,2012,33(9):923-928.(in Chinese)

[7] ERWIN S C,ZU L,HAFTEL M,et al.. Doping semiconductor nanocrystals[J]. Nature,2005,436(7047):91-94.

[8] LIN B,YAO X,ZHU Y,et al.. Multifunctional manganese-doped core shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells[J]. New J. Chem.,2013,37(10):3076-3083.

[9] LUO J,WEI H,HUANG Q,et al.. Highly efficient core-shell CuInS2 Mn doped CdS quantum dot sensitized solar cells[J]. Chem. Comm.,2013,49(37):3881-3883.

[10] 杜鸿延,魏志鹏,孙丽娟,等.与掺杂浓度相关的ZnS∶Mn纳米粒子的发光性质[J].中国光学,2013,6(1):112-116.

    DU H Y,WEI ZH P,SUN L J,et al.. Luminescent properties of ZnS∶Mn nanoparticles dependent on doping concentration[J]. Chinese Optics,2013,6(1):112-116.(in Chinese)

[11] KAMAT P V. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer[J]. Acc. Chem. Res.,2012,45(11):1906-1915.

[12] HAZARIKA A,LAYEK A,DE S,et al. Ultranarrow and widely tunable Mn2+-induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys[J]. Phys. Rev. Lett.,2013,110(26):267401.

[13] ZHAO Y,RIEMERSMA C,PIETRA F,et al. High-temperature luminescence quenching of colloidal quantum dots[J]. ACS Nano,2012,6(10):9058-9067.

[14] BACHMANN V,RONDA C,MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG∶Ce[J]. Chem. Mater.,2009,21(10):2077-2084.

[15] TANAKA M,MASUMOTO Y. Very weak temperature quenching in orange luminescence of ZnS∶Mn2+ nanocrystals in polymer[J]. Chem. Phys. Lett.,2000,324(4):249-254.

[16] CUI Y,ZHONG Z,WANG D,et al. High performance silicon nanowire field effect transistors[J]. Nano Lett.,2003,3(2):149-152.

[17] ZHANG W,LI Y,ZHANG H,et al. Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals[J]. Inorg. Chem.,2011,50(20):10432-10438.

[18] YUAN X,ZHENG J,ZENG R,et al. Thermal stability of Mn2+ ion luminescence in Mn-doped core shell quantum dots[J]. Nanoscale,2014,6(1):300-307.

[19] ZENG R,RUTHERFORD M,XIE R,et al. Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents[J]. Chem. Mater.,2010,22(6):2107-2113.

[20] ZENG R,ZHANG T,DAI G,et al. Highly emissive,color-tunable,phosphine-free Mn∶ ZnSe/ZnS core/shell and Mn∶ZnSeS shell-alloyed doped nanocrystals[J]. J. Phys. Chem. C,2011,115(7):3005-3010.

[21] PRADHAN N,PENG X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:control of optical performance via greener synthetic chemistry[J]. J. Am. Chem. Soc.,2007,129(11):3339-3347.

[22] ZHENG J,CAO S,WANG L,et al. Temperature-dependent photoluminescence properties of Mn∶ZnCdS quantum dots[J]. RSC Adv.,2014,4(58):30948-30952.

[23] CHEN H-Y,MAITI S,NELSON C A,et al. Tuning temperature dependence of dopant luminescence via local lattice strain in core/shell nanocrystal structure[J]. J. Phys. Chem. C,2012,116(44):23838-23843.

[24] ZHOU W,LIU R,TANG D,et al. Luminescence and local photonic confinement of single ZnSe∶ Mn nanostructure and the shape dependent lasing behavior[J]. Nanotechnology,2013,24(5):055201.

[25] CHEN H-Y,MAITI S,SON DH. Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals[J]. Acs Nano,2012,6(1):583-591.

袁曦, 郑金桔, 李海波, 赵家龙. Mn 掺杂ZnSe 量子点变温发光性质研究[J]. 中国光学, 2015, 8(5): 806. YUAN Xi, ZHENG Jin-ju, LI Hai-bo, ZHAO Jia-long. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J]. Chinese Optics, 2015, 8(5): 806.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!