作者单位
摘要
大连海事大学 理学院,辽宁 大连 116026
采用高温固相法制备了不同Tb3+掺杂浓度的NaGd(MoO42∶Tb3+荧光粉,XRD结果证实所制得样品为纯相。利用荧光光谱测量对该荧光粉的发光浓度猝灭进行了分析,证明荧光浓度猝灭是由Tb3+离子间的交换相互作用所导致,并符合浓度猝灭的Ozawa模型。采用Auzel提出的自产生猝灭模型对Tb3+5D4能级荧光动力学进行了分析,结果表明该模型能够很好地解释荧光寿命对浓度的依赖关系。研究了Tb3+5D4能级的发光强度和荧光寿命对样品温度的依赖关系,提出了利用荧光寿命进行温度传感的方法,并对温度传感的绝对和相对灵敏度进行了分析。
高温固相法 浓度猝灭 荧光衰减 热猝灭 温度传感 solid-state reaction concentration quenching fluorescent decay thermal quenching temperature sensing 
发光学报
2023, 44(10): 1770
作者单位
摘要
中南大学 材料科学与工程学院,湖南 长沙 410083
采用高温固相法制备了一系列新型Na3Sc2(1-x(BO33xTb3+荧光粉,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、光致发光光谱(PL)、真空紫外荧光光谱(VUV)、高温荧光光谱和荧光衰减寿命等表征手段对其结构、形貌、成分、发光性能进行了系统研究。结果表明,在242 nm紫外光激发下,Na3Sc2(1-x(BO33xTb3+荧光粉发出主峰位于553 nm的明亮绿光,当掺杂浓度x = 0.025时,发光强度达到最大。真空紫外荧光光谱显示这些荧光粉也可以被187 nm的深紫外光有效激发。在环境温度上升过程中,Na3Sc1.95(BO33∶0.025Tb3+表现出了反热猝灭行为;当温度达到473 K时,样品的发光强度达到最高,为室温(298 K)时的109.3%。该类新型绿色荧光粉的强发射、高热稳定性等特点预示了其在照明和显示领域的应用潜力。
荧光粉 Tb3+掺杂 热猝灭 照明与显示 phosphor Tb3+ doped anti-thermal-quenching lighting and display 
发光学报
2023, 44(4): 598
杨航 1,*魏忆 1黄勤文 1徐婉卿 1[ ... ]李国岗 1,2
作者单位
摘要
1 中国地质大学 (武汉)材料与化学学院, 武汉 430074
2 中国地质大学(武汉)浙江研究院, 杭州 311305
采用传统的高温固相法合成出了硫元素掺杂的具有 473 nm和 525 nm双发射的 UCr4C4型 RbNa3(Li12Si4O16-ySy):Eu2+窄带蓝光荧光粉, 并在 UCr4C4结构中实现零热猝灭发光性能, 其发光积分强度在 250℃下提升至室温的 107%。Eu2+离子的格位占据分析及缺陷表征揭示了对应的发光调控和零热猝灭机理。采用阳离子取代策略 (Ti4+部分取代 Si4+)成功消除了荧光粉位于 525 nm的肩带峰, 将蓝光色纯度从 61.1%提升至 83.7%, 使 RbNa3(Li12Si3TiO16-ySy):Eu2+荧光粉有望成为应用于液晶显示背光的蓝色发光候选材料, 为 UCr4C4型发光材料零热猝灭性能的实现及色纯度的优化提供了新的设计思路。
UCr4C4结构 硫元素掺杂 窄带蓝光 发光调控 热猝灭 UCr4C4 structure sulfur element doped narrow-band blue emission luminescence adjustment zero-thermal-quenching 
硅酸盐学报
2022, 50(12): 3126
作者单位
摘要
西安电子科技大学 先进材料与纳米科技学院, 西安 710071
红色荧光粉对改善白光LED(w-LEDs)发光性能具有至关重要的作用。为制备与商用LED芯片相符的、高效和稳定性好的红色荧光粉, 本研究采用传统高温固相法合成了系列四方白钨矿结构的Na1-xMxCaEu(WO4)3 (M= Li, K)红色荧光粉, 并系统研究了Li+和K+的掺杂对NaCaEu(WO4)3荧光粉晶体结构、发光性能以及热猝灭特性的影响。Rietveld精修结果显示, 掺杂Li+和K+没有改变NaCaEu(WO4)3基质的四方白钨矿结构, 而是形成了固溶体, 并且导致晶格常数呈现规律性的变化。光致发光光谱表明, 在近紫外光395 nm激发下, 荧光粉呈现典型的红色发射, 其最强发射峰位于617 nm处, 对应于Eu3+离子的5D07F2跃迁, 这表明Eu3+处于非对称中心格位。更值得注意的是掺杂Li+和K+有效改善了NaCaEu(WO4)3荧光粉的发光强度, 当Li+和K+的掺杂浓度(物质的量分数)分别为100%和30%时, 荧光粉的发光强度和色纯度达到最佳。此外, 还对Na1-xMxCaEu(WO4)3 (M=Li, K)荧光粉的热猝灭特性机理进行了研究。结果显示, 掺杂Li+和K+荧光粉均表现出卓越的热猝灭特性, 其中当Li+掺杂浓度(物质的量)为100%时, LiCaEu(WO4)3荧光粉的热猝灭特性最佳。以上研究结果均表明Na1-xMxCaEu(WO4)3 (M= Li, K)红色荧光粉在大功率近紫外激发的白光发光二极管中具有潜在的应用价值。
荧光粉 白钨矿结构 热猝灭特性 光致发光特性 phosphor scheelite structure thermal quenching characteristics photoluminescence property 
无机材料学报
2022, 37(6): 676
何献国 1,2,3黄得财 2,3,*宋丽平 2,3梁思思 2,3朱浩淼 1,2,3,4,**
作者单位
摘要
1 福州大学 化学学院,福建 福州 350108
2 中国科学院福建物质结构研究所 中国科学院功能纳米结构设计与组装重点实验室,福建省纳米材料重点实验室,福建 福州 350002
3 厦门稀土材料研究所 厦门市稀土光电功能材料重点实验室,福建 厦门 361021
4 中国科学院 赣江创新研究院,江西 赣州 341000
宽带近红外荧光粉转换型LED光源在医学成像、食品检测以及传感等领域展现出了巨大的应用前景,该类光源的光谱和效率与所用近红外荧光粉的性能紧密相关,Cr3+离子激活的近红外发光材料具有可被蓝光有效激发、发射光谱可调等优点,因此得到了重点关注。本文采用高温固相法制备了NaAlP2O7∶Cr3+宽带近红外发光荧光粉,该材料在450 nm蓝光激发下,发射出650~1 000 nm的近红外光,峰值位于780 nm,半高宽为 1 580 cm-1;其在423 K下的发光强度能够维持室温下的71%,表现出良好的发光热稳定性。对材料的晶体结构和变温光谱(8~503 K)进行了系统的分析,计算得到了Cr3+离子在NaAlP2O7基质中的晶体场强度等参数;利用8 K低温光谱,并结合计算,分析了Cr3+各能级零声子线;基于高温变温光谱,讨论了材料的电?声子耦合效应及荧光热猝灭机理。
近红外荧光粉 宽带发射 热猝灭 电-声子耦合 near-infrared phosphor broadband emission photoluminescence thermal quenching electron-phonon coupling 
发光学报
2022, 43(9): 1380
张曦月 1,*张乐 1孙炳恒 2马跃龙 1,3[ ... ]陈浩 1
作者单位
摘要
1 江苏师范大学 物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
2 中国科学院 上海光学精密机械研究所, 上海 201800
3 江苏大学 机械工程学院, 江苏 镇江 212013
4 中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
荧光转换材料普遍存在的发光强度随温度升高而降低的热猝灭现象严重影响了器件的性能,限制了其在高功率发光二极管(LED)/激光二极管(LD)照明中的应用。然而,部分荧光材料却会出现随着温度升高发光强度增大的现象,即反常热猝灭效应。反常热猝灭作为提升发光材料及其器件应用性能的有效途径得到了广泛研究。本文总结了目前反常热猝灭效应在发光领域的研究现状及应用,阐述了发光反常热猝灭的机理,并对其未来发展趋势进行了展望,以期开发出具有更优反常热猝灭特性的新型发光材料,满足高效高功率LED/LD照明器件的应用需求。
高功率密度 LED/LD照明 热猝灭现象 反常热猝灭效应 high power density LED/LD lighting thermal quenching phenomenon abnormal thermal quenching effect 
发光学报
2021, 42(10): 1458
作者单位
摘要
硅酸盐建筑材料国家重点实验室 武汉理工大学, 湖北 武汉430070
采用固相反应法合成了Eu3+离子激活的Ca1.9Eu0.1NaMg2-xZnx(VO4)3(0≤x≤1), 并研究了其发光和热猝灭性能。经粉末X射线衍射确认, 反应产物由目标相和微量杂质相EuVO4构成。在355 nm激发下, 样品中均能同时观察到来自[VO4]3-基团和Eu3+离子的特征发光。研究结果表明: 随着x值的增加, 上述两种发光的强度均先增加后降低; 而它们的最强激发峰位置由347 nm逐渐地红移至356 nm, Stokes位移也逐渐地减小。这种现象应归因于Zn3d轨道和O2p轨道间很强的轨道杂化效应, 这种效应随着x值的增加而逐渐增强。此外, Eu3+离子荧光发射强度最大值对应的x值与自激活荧光的不同。当x=1.0时, 两者的相对强度差别最大。经荧光热猝灭测试确认, 上述现象是由样品中的自激活荧光表现出比Eu3+离子荧光更严重的荧光热猝灭造成的。因而, 在紫外光激发下, 样品发出荧光的颜色具有温度敏感性。
荧光粉 碱土钒酸盐 自激活荧光 Eu3+离子 荧光热猝灭 phosphor alkaline earth vanadate self-activated emission Eu3+ ion photoluminescence thermal quenching 
发光学报
2017, 38(8): 995
作者单位
摘要
1 中国科学院大连化学物理研究所,催化基础国家重点实验室&洁净能源国家实验室,大连 116023
2 中国科学院大学,北京 100049
本文使用稳态及时间分辨荧光光谱法对陶瓷相铁电材料SrxBa1-xNb2O6(SBN-x)及Cr3+掺杂的SrxBa1-xNb2O6 (SBN:Cr3+)的光生载流子的复合动力学进行了研究。带边激发条件下SBN-70非辐射复合过程在温度高于137 K时已快于辐射复合,说明SBN在765 nm处对应的发光中心极容易受到晶格振动影响,使激发态电子转而通过声子参与的无辐射跃迁回到基态。对于Cr3+离子掺杂的SBN-70,使用395 nm和480 nm激发得到发光中心的热激活能分别为Ea=380.9±61.0 meV和Ea=374.6±51.4 meV。发现了SBN低温下很强的光致荧光猝灭性质,其产生原因可能归属为样品对激发光的吸收造成的捕获电子态对发光的二次吸收。
荧光热猝灭 光致荧光猝灭 SrxBa1-xNb2O6 SrxBa1-xNb2O6 thermal PL quenching light-induced PL quenching 
光散射学报
2016, 28(3): 259
作者单位
摘要
1 吉林师范大学功能材料物理与化学教育部重点实验室,吉林四平 136000
2 宁波工程学院机械工程学院,浙江宁波 315016
量子点(QD)照明器件中电流导致的焦耳热会使其工作温度高于室温?因此研究量子点的发光热稳定性十分重要。本文利用稳态光谱和时间分辨光谱研究了具有不同壳层厚度的Mn掺杂ZnSe(Mn:ZnSe)量子点的变温发光性质, 温度范围是80~500 K。实验结果表明, 厚壳层(65单层(MLs))Mn∶ZnSe量子点的发光热稳定性要优于薄壳层(26 MLs)的量子点。从80 K升温到400 K的过程中, 厚壳层Mn∶ZnSe量子点的发光几乎没有发生热猝灭, 发光量子效率在400 K高温下依然可以达到60%。通过对比Mn∶ZnSe量子点的变温发光强度与荧光寿命, 对Mn∶ZnSe量子点发光热猝灭机制进行了讨论。最后, 为了研究Mn∶ZnSe量子点的发光热猝灭是否为本征猝灭, 对具有不同壳层厚度的Mn∶ZnSe量子点进行了加热-冷却循环(300-500-300 K)测试, 发现厚壳层的Mn∶ZnSe量子点的发光在循环中基本可逆。因此, Mn∶ZnSe量子点可以适用于照明器件, 即使器件中会出现不可避免的较强热效应。
量子点 纳米晶 Mn掺杂量子点 发光性质 热猝灭 quantum dots nanocrystal Mn-doped quantum dots luminescence property thermal quenching 
中国光学
2015, 8(5): 806
陈磊 1,2,*刘荣辉 1,2庄卫东 1,2刘元红 1,2[ ... ]杜甫 1,2
作者单位
摘要
1 北京有色金属研究总院 稀土材料国家工程研究中心, 北京 100088
2 有研稀土新材料股份有限公司, 北京 100088
采用高温固相法制备了不同Eu2+浓度掺杂的Sr2Si5N8红色荧光粉,并对其晶体结构、形貌、发光和热猝灭性能进行了详细的研究.XRD和SEM测试表明,所合成的样品为纯相Sr2Si5N8结构,具有较高的结晶度.PL光谱数据表明,Eu2+替代Sr2+格位形成两种不同的发光中心.温度特性测试发现,样品的热猝灭性能很大程度上取决于Eu2+浓度.随着Eu2+浓度的增加,样品的热猝灭性能先增强后降低.不同发光中心的荧光强度比和荧光寿命测试结果表明:在较低Eu2+掺杂条件下,Eu2+浓度引起热猝灭性能改变的机制主要归因于Eu2+占据不同Sr2+格位的几率的改变.
荧光粉 热猝灭 荧光寿命 Sr2Si5N8 Sr2Si5N8 phosphor thermal quenching fluorescence lifetime 
发光学报
2015, 36(4): 371

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!