作者单位
摘要
1 吉林师范大学功能材料物理与化学教育部重点实验室,吉林四平 136000
2 宁波工程学院机械工程学院,浙江宁波 315016
量子点(QD)照明器件中电流导致的焦耳热会使其工作温度高于室温?因此研究量子点的发光热稳定性十分重要。本文利用稳态光谱和时间分辨光谱研究了具有不同壳层厚度的Mn掺杂ZnSe(Mn:ZnSe)量子点的变温发光性质, 温度范围是80~500 K。实验结果表明, 厚壳层(65单层(MLs))Mn∶ZnSe量子点的发光热稳定性要优于薄壳层(26 MLs)的量子点。从80 K升温到400 K的过程中, 厚壳层Mn∶ZnSe量子点的发光几乎没有发生热猝灭, 发光量子效率在400 K高温下依然可以达到60%。通过对比Mn∶ZnSe量子点的变温发光强度与荧光寿命, 对Mn∶ZnSe量子点发光热猝灭机制进行了讨论。最后, 为了研究Mn∶ZnSe量子点的发光热猝灭是否为本征猝灭, 对具有不同壳层厚度的Mn∶ZnSe量子点进行了加热-冷却循环(300-500-300 K)测试, 发现厚壳层的Mn∶ZnSe量子点的发光在循环中基本可逆。因此, Mn∶ZnSe量子点可以适用于照明器件, 即使器件中会出现不可避免的较强热效应。
量子点 纳米晶 Mn掺杂量子点 发光性质 热猝灭 quantum dots nanocrystal Mn-doped quantum dots luminescence property thermal quenching 
中国光学
2015, 8(5): 806

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!