光学与光电技术, 2018, 16 (3): 84, 网络出版: 2018-07-31  

利用小周期蛾眼结构提高红外材料抗反射特性的研究

Study on the Improvement of Antireflective Performance of Infrared Materials by Using Small Periodic Moth-Eye Structures
作者单位
1 华中光电技术研究所武汉—光电国家实验室, 湖北 武汉 430223
2 长春理工大学光电工程学院, 吉林 长春130022
摘要
在亚波长区(λ/n<Λ<λ)具有较低反射率和零级透射率,然而在小周期区(Λ<λ/n)具有低反射率和透射率。因此,基于严格耦合波分析(RCWA)理论,以硅基底仿生小周期蛾眼微纳结构为例,设计并分析了针对该结构反射率及透射率的影响因素,如占空比、刻蚀深度、周期等,并给出了最优化参数组合。在制作过程中采用电子束刻蚀及剥离技术进行掩模图形的光刻,然后经过反应离子刻蚀得到所需深度。最后,应用原子力显微镜进行结构形貌表征,红外光谱仪测试得到该结构反射率在7%左右,透射率约为69%~93%。
Abstract
It characterizes low reflectivity and low zeroth-order transmissivity in the sub-wavelength region(λ/n<Λ<λ), which contrasts the low reflectivity and transmissivity in small periodic region(Λ<λ/n).So, based on rigorous coupled-wave analysis(RCWA) theory, in case of bionic moth-eye micro-nanostructure with small periodic on Si surface is designed.Then it analyzes what impact on reflectivity and transmissivity that structure parameters produced, such as array period, duty cycle and thickness and so on. The results get the ideal optimized parameter groups.The lithography of the mask pattern is made by the electron beam etching and liftoff technique in the fabrication process, and the required depth is after than obtained by reactive ion etching(RIE).In summary, atomic force microscope(AFM) is used to characterize the structure and morphology.The results confirm that the reflectivity of the infrared spectrometer is about 7% and transmissivity of that is about 69%~93%.
参考文献

[1] Bernhard C G, Miller W H.A corneal nipple pattern iniInsect compound eyes[J].Acta Phyiologica Scandinavica, 1962, 56(3~4): 385-386.

[2] Kubota S, Kanomata K, Ahmmad B, et al. Optimized design of moth-eye antireflection structure for organic photovoltaics[J], Journal of Coatings Technology and Research, 2015, 13(1): 201-210.

[3] Asadollahbaik A, BodenS A, CharltonM D, et al. Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation[J]. Opt. Express, 2014, 22 (Suppl 2): A402-415.

[4] Sun C H, Jiang P, Jiang B.Broadband moth-eye antireflection coatings on silicon[J].Applied Physics Letters, 2008, 92(6): 061112.

[5] Zhang Z, Wang Z, Wang D, et al. Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography[J].Journal of Laser Applications, 2014, 26(1): 012010.

[6] 张超, 张庆茂, 郭亮, 等.非晶硅薄膜太阳能电池的紫外激光刻蚀工艺[J]. 强激光与粒子束, 2012, 24(11): 2751 -2756.

    ZHANG Chao, ZHANG Qing-mao, GUO Liang, et al. Ablating process with 355nm laser for amorphous silicon thin-film solar cell[J].High Power Laser and Particle Beams, 2012, 24(11): 2751-2756.

[7] Chen Q, Hubbard G, Shields P A, et al. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting[J].Applied Physics Letters, 2009, 94(26): 263118.

[8] 尚鹏, 熊胜明.ZnSe 衬底表面亚波长增透结构的设计及误差分析[J]. 中国激光, 2014, (1): 251-256.

    SHANG Peng, XIONG Sheng-ming.Design and error analysis of sub-wavelength antireflective micro-structure on surface of ZnSe substrate[J].Chinese Journal of Lasers, 2014, (1): 251-256.

[9] 范培迅, 龙江游, 江大发, 等. 紫外-远红外超宽谱带高抗反射表面微纳米结构的超快激光制备及功能研究[J], 中国激光, 2015, (08): 234-241.

    FAN Pei-xun, LONG Jiang-you, JIANG Da-fa, et al. Ablating process with 355 nm laser for amorphous silicon thin-film solar cell[J].High Power Laser and Particle Beams, 2012, 24(11): 2751-2756.

[10] 张超, 张庆茂, 郭亮, 等.非晶硅薄膜太阳能电池得紫外激光刻蚀工艺[J].强激光与粒子束, 2012, 24(11): 2751-2756.

    ZHANG Chao, ZHANG Qing-mao, GUO Liang, et al. Ablating process with 355nm laser for amorphous silicon thin-film solar cell [J].High Power Laser and Particle Beams, 2012, 24(11): 2751-2756.

[11] 吕晓占, 季凌飞, 吴燕, 等.皮秒激光-化学复合法制备高效减反射晶硅表面微结构研究[ J ].中国激光, 2015, 42(2): 0403006.

    LU Xiao-zhan, JI Ling-fei, WU Yan, et al. Fabrication of high performance anti-reflection silicon surface by picosecond laser scanning irradiation with chemical corrosion[J].Chinese J Lasers, 2015, 42(2): 0403006.

[12] Moharam M G, Gaylord T K.Rigorous coupled-wave analysis of planar-grating diffraction [J]. Journal ofthe Optical Society of America, 1981, 71(7): 811-818.

[13] Moharam M G, Grann EB, Pommet D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J].Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

[14] Moharam M, Gaylord T.Rigorous coupled-wave analysis of planar-grating diffraction[J]. JOSA, 1981, 71(7): 811-818.

[15] 董亭亭, 付跃刚, 陈驰, 等.锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 522004.

    DONG Ting-ting, FU Yue-gang, CHEN Chi, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J].Acta Optica Sinica, 2016(5): 522004.

[16] 崔铮.微纳加工技术及其应用[M].北京: 高等教育出版社, 2009.

    CUI Zheng, Micro-nanofabrication technologies and applications[M].Beijing: Higher Education Press, 2009.

[17] 董亭亭.仿生蛾眼抗反射微结构光学机理研究[D].长春: 长春理工大学, 2016.

    DONG Ting-ting.Research on optical mechanism of bionic moth-eye antireflection microstructure[D]. Changchun: Changchun University of Science and Technonlgy, 2016.

董亭亭, 陈驰, 王海涛, 耿安兵, 付跃刚. 利用小周期蛾眼结构提高红外材料抗反射特性的研究[J]. 光学与光电技术, 2018, 16(3): 84. DONG Ting-ting, CHEN Chi, WANG Hai-tao, GENG An-bing, FU Yue-gang. Study on the Improvement of Antireflective Performance of Infrared Materials by Using Small Periodic Moth-Eye Structures[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2018, 16(3): 84.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!