激光与光电子学进展, 2020, 57 (14): 141006, 网络出版: 2020-07-28   

基于自然场景统计的色域映射图像无参考质量评价 下载: 888次

No-Reference Quality Evaluation for Gamut Mapping Images Based on Natural Scene Statistics
作者单位
1 成都理工大学工程技术学院, 四川 乐山 614000
2 中国矿业大学信息与控制工程学院, 江苏 徐州 221116
引用该论文

余伟, 徐晶晶, 刘玉英, 张俊升, 李腾腾. 基于自然场景统计的色域映射图像无参考质量评价[J]. 激光与光电子学进展, 2020, 57(14): 141006.

Wei Yu, Jingjing Xu, Yuying Liu, Junsheng Zhang, Tengteng Li. No-Reference Quality Evaluation for Gamut Mapping Images Based on Natural Scene Statistics[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141006.

参考文献

[1] Dugay F, Farup I, Hardeberg J Y. Perceptual evaluation of color gamut mapping algorithms[J]. Color Research and Application, 2008, 33(6): 470-476.

[2] KolasO, FarupI. Efficient hue-preserving and edge-preserving spatial color gamut mapping[C]// 15th Color Imaging Conference, November, 5-9, 2007, Albuquerque, NM, USA. New York: IEEE, 2007, 978: 207- 212.

[3] Farup I, Gatta C, Rizzi A. A multiscale framework for spatial gamut mapping[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2423-2435.

[4] Zhou Y, Li L D, Wu J J, et al. Blind quality index for multiply distorted images using biorder structure degradation and nonlocal statistics[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3019-3032.

[5] Zhou Y, Li L D, Wang S Q, et al. No-reference quality assessment for view synthesis using DoG-based edge statistics and texture naturalness[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4566-4579.

[6] Chandler D M. Seven challenges in image quality assessment: past, present, and future research[J]. ISRN Signal Processing, 2013, 2013: 1-53.

[7] 薛小波, 郁梅, 何美伶. 基于仿视觉细胞模型的立体图像质量评价方法[J]. 激光与光电子学进展, 2016, 53(4): 041004.

    Xue X B, Yu M, He M L. Stereoscopic image-quality-assessment method based on visual cell model[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041004.

[8] 张勇, 金伟其. 小波域结构相似度融合图像质量评价方法[J]. 中国激光, 2012, 39(6): 0109007.

    Zhang Y, Jin W Q. Assessment method of fusion image quality in wavelet domain structural similarity[J]. Chinese Journal of Lasers, 2012, 39(6): 0109007.

[9] 熊义明, 邵枫, 孟祥超. 基于稀疏表示的失真卫星立体图像全参考质量评价[J]. 光学学报, 2018, 38(12): 1210002.

    Xiong Y M, Shao F, Meng X C. Sparse representation-based full-reference quality assessment of distorted satellite stereo images[J]. Acta Optica Sinica, 2018, 38(12): 1210002.

[10] Zhang L, Zhang L, Mou X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.

[11] Xue W F, Zhang L, Mou X Q, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.

[12] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

[13] 薛松, 张思雨, 刘永峰. 高光谱超分图像质量评价[J]. 激光与光电子学进展, 2019, 56(4): 041001.

    Xue S, Zhang S Y, Liu Y F. Quality assessment of hyperspectral super-resolution images[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041001.

[14] 黄姝钰, 桑庆兵. 基于图像融合的无参考立体图像质量评价[J]. 激光与光电子学进展, 2019, 56(7): 071004.

    Huang S Y, Sang Q B. No-reference stereo image quality assessment based on image fusion[J]. Laser & Optoelectronics Progress, 2019, 56(7): 071004.

[15] 朱晓玲, 许妙忠, 丛铭. 基于支持向量机的无参考遥感图像质量评价方法[J]. 航天返回与遥感, 2014, 35(6): 83-90.

    Zhu X L, Xu M Z, Cong M. Assessment method for no-reference remote sensing image quality based on support vector machine[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(6): 83-90.

[16] 李一凡, 李朝锋, 桑庆兵. 四元数小波变换优化单目图的无参考立体图像质量评价[J]. 激光与光电子学进展, 2019, 56(18): 181006.

    Li Y F, Li C F, Sang Q B. No-reference stereo image quality assessment of cyclopean images optimized using quaternion wavelet transform[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181006.

[17] Li L D, Lin W S, Wang X S, et al. No-reference image blur assessment based on discrete orthogonal moments[J]. IEEE Transactions on Cybernetics, 2016, 46(1): 39-50.

[18] Li L D, Wu D, Wu J J, et al. Image sharpness assessment by sparse representation[J]. IEEE Transactions on Multimedia, 2016, 18(6): 1085-1097.

[19] Li L D, Zhou Y, Gu K, et al. Quality assessment of DIBR-synthesized images by measuring local geometric distortions and global sharpness[J]. IEEE Transactions on Multimedia, 2018, 20(4): 914-926.

[20] Zhou Y, Li L D, Wang S Q, et al. No-reference quality assessment of DIBR-synthesized videos by measuring temporal flickering[J]. Journal of Visual Communication and Image Representation, 2018, 55: 30-39.

[21] Zhou Y, Li L D, Zhu H C, et al. No-reference quality assessment for contrast-distorted images based on multifaceted statistical representation of structure[J]. Journal of Visual Communication and Image Representation, 2019, 60: 158-169.

[22] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.

[23] Zhang Y, Chandler D M. No-reference image quality assessment based on log-derivative statistics of natural scenes[J]. Journal of Electronic Imaging, 2013, 22(4): 043025.

[24] Gu K, Zhai G T, Yang X K, et al. Using free energy principle for blind image quality assessment[J]. IEEE Transactions on Multimedia, 2015, 17(1): 50-63.

[25] Lissner I, Preiss J, Urban P, et al. Image-difference prediction: from grayscale to color[J]. IEEE Transactions on Image Processing, 2013, 22(2): 435-446.

[26] Lee D, Plataniotis K N. Towards a full-reference quality assessment for color images using directional statistics[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3950-3965.

[27] Lee D, Plataniotis K N. Toward a No-reference image quality assessment using statistics of perceptual color descriptors[J]. IEEE Transactions on Image Processing, 2016, 25(8): 3875-3889.

[28] Liu L X, Hua Y, Zhao Q J, et al. Blind image quality assessment by relative gradient statistics and adaboosting neural network[J]. Signal Processing: Image Communication, 2016, 40: 1-15.

[29] Zhang X, Wandell B A. A spatial extension of CIELAB for digital color-image reproduction[J]. Journal of the Society for Information Display, 1997, 5(1): 61-63.

[30] Wu J J, Lin W S, Shi G M, et al. Visual orientation selectivity based structure description[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4602-4613.

[31] Marĉelja S. Mathematical description of the responses of simple cortical cells[J]. Journal of the Optical Society of America, 1980, 70(11): 1297-1300.

[32] Fang Y M, Ma K D, Wang Z, et al. No-reference quality assessment of contrast-distorted images based on natural scene statistics[J]. IEEE Signal Processing Letters, 2015, 22(7): 838-842.

[33] Jupp P E, Batschelet E. Circular statistics in biology[J]. Biometrics, 1982, 38(3): 870.

[34] Bara czuk Z, Zolliker P, Giesen J. Image-individualized gamut mapping algorithms[J]. Journal of Imaging Science and Technology, 2010, 54(3): 030201.

[35] Thurstone L L. A law of comparative judgment[J]. Psychological Review, 1927, 34(4): 273-286.

[36] Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513-516.

[37] Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364.

[38] Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352.

[39] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.

[40] Zhang L, Zhang L, Bovik A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2579-2591.

余伟, 徐晶晶, 刘玉英, 张俊升, 李腾腾. 基于自然场景统计的色域映射图像无参考质量评价[J]. 激光与光电子学进展, 2020, 57(14): 141006. Wei Yu, Jingjing Xu, Yuying Liu, Junsheng Zhang, Tengteng Li. No-Reference Quality Evaluation for Gamut Mapping Images Based on Natural Scene Statistics[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141006.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!