中国激光, 2013, 40 (2): 0201001, 网络出版: 2012-12-21   

飞秒激光微孔加工 下载: 8064次

Femtosecond Laser Drilling of Micro-Holes
作者单位
北京理工大学先进加工技术国防重点学科实验室, 北京 100081
摘要
飞秒激光具有超快、超强的特性,在微孔加工中有着独特的优势,尤其是针对高品质、大深径比的微孔加工有着不可替代的作用。介绍了超短脉冲激光微孔加工的优势以及研究意义,综述了近十几年来基于超短脉冲激光的微孔加工研究现状,并讨论了材料、激光脉冲参数、加工方式和加工环境等因素对超短脉冲激光微孔加工的影响。指出了现阶段超短脉冲激光微孔加工的应用前景,并总结了超短脉冲激光微孔加工当前所面临的挑战,以及今后的研究重点。
Abstract
With ultrashort pulses and ultra high power densities, femtosecond laser has unique advantages in micro-holes drilling, especially for high-quality and high-aspect-ratio micro-holes. The advantages and study implications of ultrashort pulse laser drilling of micro-holes are introduced. Major progress in femtosecond laser drilling of micro-holes is reviewed. The impacts of materials properties, laser parameters, drilling methods and ambient environments are discussed. In addition, potential applications, key challenges and future research trends are presented.
参考文献

[1] R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials[J]. Nat. Photon., 2008, 2(4): 219~225

[2] J. X. Gong, X. Zhao, Q. Xing et al.. Femtosecond laser-induced cell fusion[J]. Appl. Phys. Lett., 2008, 92(9): 093901

[3] S. Kawata, H. B. Sun, T. Tanaka et al.. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412(6848): 697~698

[4] S. S. Mao, F. Quéré, S. Guizard et al.. Dynamics of femtosecond laser interactions with dielectrics[J]. Appl. Phys. A: Mater. Sci. & Process., 2004, 79(7): 1695~1709

[5] L. Jiang, H. L.Tsai. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Appl. Phys. D, 2004, 37(10): 1492~1496

[6] X. Li, C. Wang, L. Jiang et al.. Transient localized material properties changes by ultrafast laser-pulse manipulation of electron dynamics in micro/nano manufacturing[C]. San Francisco, Mater. Res. Soc. Spring Meeting, 2011, 1365: 3~8

[7] C. B. Schaffer, A. Brodeur, E. Mazur. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Meas. Sci. & Technol., 2001, 12(21): 1784~1794

[8] N. Sanner, O. Utéza, B. Bussiere et al.. Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics[J]. Appl. Phys. A: Mater. Sci. & Process., 2009, 94(4): 889~897

[9] A. P. Joglekar, H. Liu, G. J. Spooner et al.. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining[J]. Appl. Phys. B: Lasers and Optics, 2003, 77(1): 25~30

[10] R. Le Harzic, N. Huot, E. Audouard et al.. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Appl. Phys. Lett., 2002, 80(21): 3886~3888

[11] S. Nolte, C. Momma, H. Jacobs et al.. Ablation of metals by ultrashort laser pulses[J]. J. Opt. Soc. Am. B: Opt. Phys., 1997, 14(10): 2716~2722

[12] W. Kautek, J. Kruger, M. Lenzner et al.. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps[J]. Appl. Phys. Lett., 1996, 69(21): 3146~3148

[13] 钟敏霖, 范培迅. 激光纳米制造技术的应用[J]. 中国激光, 2011, 38(6): 0601001

    Zhong Minlin, Fan Peixun. Applications of laser nano manufacturing technologies[J]. Chinese J. Lasers, 2011, 38(6): 0601001

[14] K. M. Davis, J. Kruger, M. Lenzner et al.. Writing waveguides in glass with a femtosecond laser[J]. Opt. Lett., 1996, 21(21): 1729~1731

[15] S. Eaton, H. Zhang, P. R. Herman et al.. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Opt. Express, 2005, 13(12): 4708~4716

[16] G. Della Valle, R. Osellame, P. Laporta et al.. Micromachining of photonic devices by femtosecond laser pulses[J]. J. Optics A: Pure Appl. Opt., 2009, 11(1): 013001

[17] 周侃, 冯东海, 李霞 等. 飞秒激光诱导ZnOAl薄膜周期结构及其光致发光特性[J]. 光学学报, 2011, 31(8): 0816002

    Zhou Kan, Feng Donghai, Li Xia et al.. Periodic nanoripples and photoluminescence on ZnOAl film induced by femtosecond laser pulses[J]. Acta Optica Sinica, 2011, 31(8): 0816002

[18] V. Maselli, J. R. Grenier, S. Ho et al.. Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel[J]. Opt. Express, 2009, 17(14): 11719~11729

[19] R. An, M. D. Hoffman, M. A. Donoghue et al.. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices[J]. Opt. Express, 2008, 16(19): 15206~15211

[20] H. B. Sun, S. Matsuo, H. Misawa. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Appl. Phys. Lett., 1999, 74(6): 786~788

[21] T. Wei, Y. K. Han, Y. J. Li et al.. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser[J]. Opt. Lett., 2008, 33(6): 536~538

[22] L. Jiang, L. J. Zhao, S. M. Wang et al.. Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment[J]. Opt. Express, 2011, 19(18): 17591~17598

[23] L. Jiang, J. P. Yang, S. Wang et al.. Fiber Mach-Zehnder interferometer based on microcavities for high temperature sensing with high sensitivity[J]. Opt. Lett., 2011, 36(19): 3753~3755

[24] 成洁, 杨明红, 王闵 等. 基于飞秒激光加工的马赫曾德尔干涉氢气传感器[J]. 光学学报, 2012, 32(7): 0706001

    Cheng Jie, Yang Minghong, Wang Min et al.. Mach-Zehnder interference hydrogen sensor based on femtosecond laser processing[J]. Acta Optica Sinica, 2012, 32(7): 0706001

[25] R. R. Gattass, L. R. Cerami, E. Mazur et al.. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates[J]. Opt. Express, 2006, 14(12): 5279~5284

[26] M. Deubel, G. Von Freymann, M. Wegener et al.. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 2004, 3(7): 444~447

[27] K. K. C. Lee, P. R. Herman, T. Shoa et al.. Microstructuring of polypyrrole by maskless direct femtosecond laser ablation[J]. Advanced Materials, 2012, 24(9): 1243~1246

[28] S. Bruneau, J. Hermann, G. Dumitru et al.. Ultra-fast laser ablation applied to deep-drilling of metals[J]. Appl. Surf. Sci., 2005, 248(1-4): 299~303

[29] C. S. Nielsen, P. Balling. Deep drilling of metals with ultrashort laser pulses: a two-stage process[J]. J. Appl. Phys., 2006, 99(9): 093101

[30] S. Kiyama, S. Matsuo, S. Hashimoto et al.. Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates[J]. J. Phys. Chem. C, 2009, 113(27): 11560~11566

[31] F. Venturini, W. Navarrini, G. Resnati et al.. Selective iterative etching of fused silica with gaseous hydrofluoric acid[J]. J. Phys. Chem. C, 2010, 114(43): 18712~18716

[32] F. He, Y. Cheng, Z. Xu et al.. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser[J]. Opt. Lett., 2010, 35(3): 282~284

[33] Y. Li, K. Itoh, W. Watanabe et al.. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Opt. Lett., 2001, 26(23): 1912~1914

[34] Z. Wu, H. Jiang, Z. Zhang et al.. Morphological investigation at the front and rear surfaces of fused silica processed with femtosecond laser pulses in air[J]. Opt. Express, 2002, 10(22): 1244~1249

[35] M. K. Bhuyan, F. Courvoisier, P. A. Lacourt et al.. High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams[J]. Opt. Express, 2010, 18(2): 566~574

[36] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses[J]. Opt. Commun., 1985, 55(6): 447~449

[37] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Tisapphire laser[J]. Opt. Lett., 1991, 16(1): 42~44

[38] P. P. Pronko, S. K. Dutta, J. Squier et al.. Machining of sub-micron holes using a femtosecond laser at 800 nm[J]. Opt. Commun., 1995, 114(1-2): 106~110

[39] H. Varel, D. Ashkenasi, A. Rosenfeld et al.. Micromachining of quartz with ultrashort laser pulses[J]. Appl. Phys. A: Mater. Sci. & Process., 1997, 65(4-5): 367~373

[40] B. N. Chichkov, C. Momma, S. Nolte et al.. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Appl. Phys. A: Mater. Sci. & Process., 1996, 63(2): 109~115

[41] B. Rethfeld, A. Kaiser, M. Vicanek et al.. Femtosecond laser-induced heating of electron gas in aluminium[J]. Appl. Phys. A: Mater. Sci. & Process., 1999, 69(7): 109~112

[42] S. I. Anisimov, B. L. Kapeliovich, T. L. Perel′man. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Sov Phys JETP, 1974, 39: 375~377

[43] T. Q. Qiu, C. L. Tien. Short-pulse laser heating on metals[J]. Int. J. Heat Mass Transfer, 1992, 35(3): 719~726

[44] L. Jiang, H. L. Tsai. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. ASME J. Heat Transfer, 2005, 127(10): 1167~1173

[45] A. Kaiser, B. Rethfeld, M. Vicanek et al.. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Phys. Rev. B, 2000, 61(17): 11437~11450

[46] L. V. Zhigilei, Z. Lin, D. S. Ivanov. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion[J]. J. Phys. Chem. C, 2009, 113(27): 11892-11906

[47] J. R. V. de. Aldana, C. Méndez, L. Roso et al.. Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments[J]. J. Phys. D: Appl. Phys., 2005, 38(16): 2764~2768

[48] L. Shah, O. G. Kosareva, A. A. Koltun. Self-focusing during femtosecond micromachining of silicate glasses[J]. IEEE J. Quant. Electron., 2004, 40(1): 57~68

[49] D. Esser, S. Rezaei, J. Z. Li et al.. Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses[J]. Opt. Express, 2011, 19(25): 25632~25642

[50] C. Y. Chien, M. C. Gupta. Pulse width effect in ultrafast laser processing of materials[J]. Appl. Phys. A: Mater. Sci, & Process., 2005, 81(6): 1257~1263

[51] T. V. Kononenko, S. M. Klimentov, S. V. Garnov et al.. Hole formation process in laser deep drilling with short and ultrashort pulses[C]. SPIE, 2002, 4426: 108~112

[52] X. Zhu, A. Y. Naumov, D. M. Villeneuve et al.. Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses[J]. Appl. Phys. A: Mater. Sci. & Process., 1999, 69(7): S367~S371

[53] S. S. Wellershoff, J. Hohlfeld, J. Güdde et al.. The role of electron-phonon coupling in femtosecond laser damage of metals[J]. Appl. Phys. A: Mater. Sci. & Process., 1999, 69(7): S99~S107

[54] H. K. Tonshoff, C. Momma, A. Ostendorf et al.. Microdrilling of metals with ultrashort laser pulses[J]. J. Laser Applications, 2000, 12(1): 23~27

[55] S. Nolte, C. Momma, G. Kamlage et al.. Polarization effects in ultrashort-pulse laser drilling[J]. Appl. Phys. A: Mater. Sci. & Process., 1999, 68(5): 563~567

[56] P. S. Banks, M. D. Feit, A. M. Rubenchik et al.. Material effects in ultra-short pulse laser drilling of metals[J]. Appl. Phys. A: Mater. Sci. & Process., 1999, 69(7): S377~S380

[57] S. Zoppel, M. Farsari, R. Merz et al.. Laser micro machining of 3C-SiC single crystals[J]. Microelectronic Engineering, 2006, 83(4-9): 1400~1402

[58] M. Kraus, S. Collmer, S. Sommer et al.. Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation[J]. J. Laser Micro/Nanoengineering, 2008, 3(3): 129~134

[59] D. Ashkenasi, M. Lorenz, R. Stoian et al.. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation[J]. Appl. Surf. Sci., 1999, 150(1-4): 101~106

[60] Y. Dong, P. Molian. Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon[J]. Appl. Phys. A: Mater. Sci. & Process., 2003, 77(6): 839~846

[61] X. Zhu, D. M. Villeneuve, A. Y. Naumov et al.. Experimental study of drilling sub-10 μm holes in thin metal foils with femtosecond laser pulses[J]. Appl. Surf. Sci., 1999, 152(3-4): 138~148

[62] J. B. Ashcom, R. R. Gattass, C. B. Schaffer et al.. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica[J]. J. Opt. Soc. Am. B, 2006, 23(11): 2317~2322

[63] A. Ruf, P. Berger, F. Dausinger et al.. Analytical investigations on geometrical influences on laser drilling[J]. J. Phys. D: Appl. Phys., 2001, 34(18): 2918~2925

[64] A. Ancona, S. Dring, C. Jauregui et al.. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers[J]. Opt. Lett., 2009, 34(21): 3304~3306

[65] A. Ancona, F. Rser, K. Rademaker et al.. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system[J]. Opt. Express, 2008, 16(12): 8958~8968

[66] S. Baudach, J. Bonse, W. Kautek. Ablation experiments on polyimide with femtosecond laser pulses[J]. Appl. Phys. A: Mater. Sci. & Process., 1999, 69(7): S395~S398

[67] F. Dausinger. Femtosecond technology for precision manufacturing: fundamental and technical aspects[C]. SPIE, 2003, 4830: 471~478

[68] A. Weck, T. H. R. Crawford, D. S. Wilkinson et al.. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Appl. Phys. A: Mater. Sci. & Process., 2008, 90(3): 537~543

[69] Y. V. White, X. X. Li, Z. Sikorski et al.. Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2[J]. Opt. Express, 2008, 16(19): 14411~14420

[70] L. Shah, J. Tawney, M. Richardson et al.. Femtosecond laser deep hole drilling of silicate glasses in air[J]. Appl. Surf. Sci., 2001, 183(3-4): 151~164

[71] A. Ostendorf, G. Kamlage, B. N. Chichkov et al.. Precise deep drilling of metals by femtosecond laser pulses[J]. Riken Rev., 2003, (50): 87~89

[72] J. F. Herbstman, A. J. Hunt. High-aspect ratio nanochannel formation by single femtosecond laser pulses[J]. Opt. Express, 2010, 18(16): 16840~16848

[73] S. Nakashima, K. Sugioka, K. Midorikawa. Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser[J]. Appl. Phys. A: Mater. Sci. & Process., 2010, 101(3): 475~481

[74] L. Jiang, H. L. Tsai. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. J. Appl. Phys., 2006, 100(2): 023116

[75] S. Baudach, J. Bonse, J. Krüger et al.. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate[J]. Appl. Surf. Sci., 2000, 154-155(1-4): 555~560

[76] S. Tao, B. Wu, S. Lei. Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining[J]. J. Appl. Phys., 2011, 109(12): 123506

[77] S. Nikumb, Q. Chen, C. Li et al.. Precision glass machining, drilling and profile cutting by short pulse lasers[J]. Thin Solid Films, 2005, 477(1): 216~221

[78] N. Brsch, K. Krber, A. Ostendorf et al.. Ablation and cutting of planar silicon devices using femtosecond laser pulses[J]. Appl. Phys. A: Mater. Sci. & Process., 2003, 77(2): 237~242

[79] W. S. O. Rodden, S. S. Kudesia, D. P. Hand et al.. The use of 'assist' gas in the precision laser drilling of titanium[C]. Dearborn: ICALEO 2000: Proceedings of the Laser Materials Processing Conference, 2000, 89: B41~B50

[80] L. Sudrie, A. Couairon, M. Franco et al.. Femtosecond laser-induced damage and filamentary propagation in fused silica[J]. Phys. Rev. Lett., 2002, 89(18): 186601

[81] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2-4): 47~189

[82] V. P. Kandidov, O. G. Kosareva, A. A. Koltun. Nonlinear-optical transformation of a high-power femtosecond laser pulse in air[J]. Quantum Electron., 2003, 33(1): 69~75

[83] G. Kamlage, T. Bauer, A. Ostendorf et al.. Deep drilling of metals by femtosecond laser pulses[J]. Appl. Phys. A: Mater. Sci. & Process., 2003, 77(2): 307~310

[84] A. E. Wynne, B. C. Stuart. Rate dependence of short-pulse laser ablation of metals in air and vacuum[J]. Appl. Phys. A: Mater. Sci. & Process., 2003, 76(3): 373~378

[85] S. Juodkazis, H. Okuno, N. Kujime et al.. Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure[J]. Appl. Phys. A: Mater. Sci. & Process., 2004, 79(4): 1555~1559

[86] J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari et al.. Water-assisted femtosecond laser pulse ablation of high aspect ratio holes[J]. Physics Procedia, 2011, 12: 89~93

[87] L. Jiao, E. Ng, L. Wee et al.. Role of volatile liquids in debris and hole taper angle reduction during femtosecond laser drilling of silicon[J]. Appl. Phys. A: Mater. Sci. & Process., 2011, 104(4): 1081~1084

[88] R. S. Bunker. A review of shaped hole turbine film-cooling technology[J]. J. Heat Transfer, 2005, 127(4): 441~453

[89] S. Baheri, S. P. A. Tabrizi, B. A. Jubran. Film cooling effectiveness from trenched shaped and compound holes[J]. Heat and Mass Transfer, 2008, 44(8): 989~998

[90] T. Beck. Laser drilling in gas turbine blades[J]. Laser Technik J., 2011, 8(3): 40~43

[91] C. Y. Yeo, S. C. Tam, S. Jana et al.. A technical review of the laser drilling of aerospace materials[J]. J. Mater. Process. Technol., 1994, 42(1): 15~49

[92] W. F. Colban, K. A. Thole, D. Bogard. A film-cooling correlation for shaped holes on a flat-plate surface[J]. J. Turbomachinery, 2011, 133(1): 011002

[93] A. C. Forsman, E. H. Lundgren, A. L. Dodell et al.. Double-pulse format for improved laser drilling[OL]. www.photonics.com/Article.aspx AID=30704,[2012-11-5]

[94] I. Miyamoto. Laser materials processing in Japan[J]. Laser Technik J., 2008, 5(3): 16~20

[95] D. N. Wang. Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining[C]. Monterey: Micro and Nano-Engineered Sensors, Optical Sensor, 2012. STu4F

[96] M. Yang, D. N. Wang, C. R. Liao. Micro-holes integrated fiber Bragg grating for simultaneous and independent refractive index and temperature measurement[C]. IEEE Communications and Photonics Conference and Exhibition (ACP), 2010. 649~650

[97] 王国彪. 纳米制造前沿综述[M]. 北京: 科学出版社, 2009

    Wang Guobiao. Overview Nano-Manufacturing Frontiers[M]. Beijing: Science Press, 2009

[98] S. Dring, S. Richter, A. Tünnermann et al.. Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon[J]. Appl. Phys. A: Mater. Sci. & Process., 2011, 105(1): 69~76

[99] M. Kraus, M. A. Ahmed, A. Michalowski et al.. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization[J]. Opt. Express, 2010, 18(21): 22305~22313

[100] A. Michalowski, D. Walter, F. Dausinger et al.. Melt dynamics and hole formation during drilling with ultrashort pulses[J]. J. Laser Micro/Nanoengineering, 2008, 3(3): 211~215

[101] J. R. V. d. Aldana, C. Méndez, L. Roso. Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses[J]. Opt. Express, 2006, 14(3): 1329~1338

[102] W. Xiong, Y. S. Zhou, X. N. He et al.. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation[J]. Light: Science & Applications, 2012, 1(4): e6

[103] S. I. Kudryashov, G. Mourou, A. Joglekar et al.. Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces[J]. Appl. Phys. Lett., 2007, 91(14): 141111

[104] C. Wang, L. Jiang, F. Wang et at.. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation[J]. J. Phys.: Condens. Matter, 2012, 24(27): 275801

[105] C. Wang, L. Jiang, F. Wang et al.. First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions[J]. Phys. Lett. A, 2011, 375: 3200~3204

[106] L. Jiang, P. J. Liu, X. L. Yan et al.. High throughput rear surface drilling of microchannls in glass based on electron dynamics control by femtosecond pulse trains[J]. Opt. Lett., 2012, 37(14): 2781~2783

[107] R. Stoian, M. Boyle, A. Thoss et al.. Laser ablation of dielectrics with temporally shaped femtosecond pulses[J]. Appl. Phys. Lett., 2002, 80(3): 353~355

[108] D. J. Hwang, T. Y. Choi, C. P. Grigoropoulos. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Appl. Phys. A: Mater. Sci. & Process., 2004, 79(3): 605~612

[109] V. Maselli, R. Osellame, G. Cerullo et al.. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching[J]. Appl. Phys. Lett., 2006, 88(19): 191107

[110] S. He, F. Chen, K. Liu et al.. Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica[J]. Opt. Llett., 2012, 37(18): 3825~3827

[111] D. Ashkenasi, N. Mueller, T. Kaszemeikat et al.. Advanced laser micro machining using a novel trepanning system[J]. J. Laser Micro/Nanoengineering, 2011, 6(1): 1~5

夏博, 姜澜, 王素梅, 闫雪亮, 刘鹏军. 飞秒激光微孔加工[J]. 中国激光, 2013, 40(2): 0201001. Xia Bo, Jiang Lan, Wang Sumei, Yan Xueliang, Liu Pengjun. Femtosecond Laser Drilling of Micro-Holes[J]. Chinese Journal of Lasers, 2013, 40(2): 0201001.

本文已被 28 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!