Author Affiliations
Abstract
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of nickel is revealed by changing the scanning speed and the laser fluence. The experimental results show the proportion of HSFL area in the overall LIPSS (i.e., K) presents a quasi-parabola function trend with the polarization orientation under a femtosecond (fs) laser single-pulse train. Moreover, an obvious fluctuation dependence of K on the pulse delay is observed under a fs laser dual-pulse train. The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train.
220.4241 Nanostructure fabrication 320.2250 Femtosecond phenomena 260.5430 Polarization 320.5540 Pulse shaping 
Chinese Optics Letters
2015, 13(6): 062201
Author Affiliations
Abstract
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
We report a simple, cost-effective and repeatable method for fabricating a large area and uniform substrate for surface-enhanced Raman scattering (SERS). The silicon, micromachined by a femtosecond laser, is coated with gold film and then treated through the dewetting process. The morphology shows a higher electric field enhancement due to light trapping. The enhancement factor of the SERS substrate is 9.2×107 with a 5 nm-thick film coated. Moreover, it also exhibits a uniform signal through Raman mapping and chemical stability with the greatest intensity deviation of 6% after a month. The proposed technique provides an opportunity to equip microchips with the SERS capabilities of high sensitivity, chemical stability, and homogeneous signals.
240.6695 Surface-enhanced Raman scattering 140.7090 Ultrafast lasers 
Chinese Optics Letters
2015, 13(11): 111401
飞秒激光微孔加工下载:8064次
作者单位
摘要
北京理工大学先进加工技术国防重点学科实验室, 北京 100081
飞秒激光具有超快、超强的特性,在微孔加工中有着独特的优势,尤其是针对高品质、大深径比的微孔加工有着不可替代的作用。介绍了超短脉冲激光微孔加工的优势以及研究意义,综述了近十几年来基于超短脉冲激光的微孔加工研究现状,并讨论了材料、激光脉冲参数、加工方式和加工环境等因素对超短脉冲激光微孔加工的影响。指出了现阶段超短脉冲激光微孔加工的应用前景,并总结了超短脉冲激光微孔加工当前所面临的挑战,以及今后的研究重点。
超快光学 超短脉冲激光 微孔加工 飞秒脉冲 脉冲序列 
中国激光
2013, 40(2): 0201001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!