光子学报, 2009, 38 (3): 587, 网络出版: 2010-07-16  

介质层厚度无序对Bragg微腔模式的影响

Effects of Disorder on Mode of Photonic Crystal Bragg Cavity
作者单位
南京理工大学 理学院,南京 210094
摘要
采用本征模展开法(EME)结合完全匹配层(PML)边界条件,研究了由TiO2和SiO2复合膜结构组成的平面光子晶体Bragg微腔的模式特性,分析了介质厚度无序对微腔模式的调制以及入射角对局域长度的影响.结果表明,若光束正入射,带边局域长度要大于禁带局域长度,随着无序度的增加光子通带的透过率逐渐降低,而禁带的透过率逐渐上升.当无序度较小时,局域长度随随机度的变化在带边和禁带内表现出相反的规律.当无序度较大时,局域长度不仅和随机度、带隙有关,还受到材料的影响;若光束斜入射,TE模的局域长度要远小于TM模对应的值,且其最小值向短波方向移动。此外,入射角和膜层数的变化都会导致局域长度的起伏.
Abstract
Based on eigen-mode expansion method (EME) and perfectly matched layer (PML) absorbing boundary condition, the properties of the mode of planar photonic crystal Bragg cavity, which was composed of TiO2and SiO2 bi-layers,were investigated. The study of localization behavior in a randomly layered medium was extended from normal to oblique incidence,and both TE and TM modes were considered. The effects of disorder and incident angle on the mode and the localization length of the cavity are studied in detail. The localization length was found to be very small in gaps and much larger in edge regions.The transmission decreases in edges while increases in gaps as the disordering degree increases .The results show that when light incidents upon the system and if the disordering degree is small, the localization length of the edge is lager than the one in the gap, and their relationship with disordering degree is different. When the disordering degree increases, localization length is affected not only by disordering degree and photonic band gap, but also the material. Moreover, the localization length can be changed with period and incident angle, and its behaviors are very different for TE and TM modes.
参考文献

[1] . Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters[J]. Appl Phys Let, 2001, 79(1): 114-116.

[2] . Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity[J]. Appl Phys Lett, 2005, 87(31): 163107.

[3] . Nanoscale quantum dot infrared sensors with photonic crystal cavity[J]. Appl Phys Lett, 2006, 88(15): 151104.

[4] . Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures[J]. Opt Commun, 1999, 160(1): 66-71.

[5] . Preparation of one-dimensional photonic crystal with variable period by using ultra-high vacuum electron beam evaporation[J]. Microelectronics Journal, 2007, 38(2): 282-284.

[6] . Radiation properties of a planar antenna on a photonic-crystal substrate[J]. J Opt Soc Am B, 1993, 10(2): 404-407.

[7] . Absence of diffusion in certain random lattices[J]. Phys Rev, 1958, 109(5): 1492-1505.

[8] . Lattice symmetry applied in transfer-matrix methods for photonic crystals[J]. J Appl Phys, 2003, 15(2): 811-821.

[9] . Photonic band structures solved by a plane-wave based transfer-matrix method[J]. Phys Rev E, 2003, 67(4): 0466071-11.

[10] . Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy[J]. Phys Rev B, 2004, 69(9): 094301.

[11] . Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study[J]. Phys Rev E, 2002, 65(5): 056608.

[12] . Splitting and tuning characteristics of the point defect modes in two-dimensional photonic crystals[J]. Phys Rev E, 2004, 69(6): 066609.

[13] . Amplification and localization behaviors of obliquely incident light in randomly layered media[J]. Phys Rev B, 1997, 55(21): 14230-14235.

[14] . Field expulsion and reconfiguration in polaritonic photonic crystals[J]. Phys Rev Lett, 2003, 90(19): 196402.

[15] . Phonon-polariton excitations in photonic crystals[J]. Phys Rev B, 2003, 68(7): 075209.

[16] BIENSTMAN P, BAETS R. Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers[J]. Opt Quantum Electron, 2001, 33(4/5): 327-341.

[17] . Rigorous and efficient optical VCSEL model based on vectorial eigenmode expansion and perfectly matchedlayers[J]. IEE Proc-Optoelectron, 2002, 149(4): 161-165.

[18] . Properties of polarization of defect mode of one-dimensional photonic crystal[J]. Acta Photonica Sinica, 2007, 36(8): 1431-1434.

[19] . Influence of medium layer thicknesses on Bragg microcavity containing negative refractive index materials[J]. Acta Photonica Sinica, 2007, 36(5): 912-916.

[20] . Effects of disorder on wave propagation in two-dimensional photonic crystals[J]. Phys Rev E, 1999, 60(5): 6118-6127.

[21] . Influence of random errors on the characteristics of typical 2D photonic crystal microcavity[J]. Appl Phys B, 2007, 88(2): 231-236.

郑改革, 史林兴, 王海娇, 蒋立勇, 李相银. 介质层厚度无序对Bragg微腔模式的影响[J]. 光子学报, 2009, 38(3): 587. ZHENG Gai-ge, SHI Lin-xing, WANG Hai-jiao, JIANG Li-yong, LI Xiang-yin. Effects of Disorder on Mode of Photonic Crystal Bragg Cavity[J]. ACTA PHOTONICA SINICA, 2009, 38(3): 587.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!