半导体光电, 2019, 40 (4): 534, 网络出版: 2019-09-20   

Mo掺杂SnO2光电特性的第一性原理研究

Study on Photoelectric Characteristics of Mo-doped SnO2 with First-Principles
作者单位
江苏大学 机械工程学院, 江苏 镇江 212013
摘要
采用基于密度泛函理论(DFT)的第一性原理, 研究了不同掺杂浓度下钼(Mo)掺杂SnO2的能带结构、电导率、吸收和反射率。建立了MoxSn1-xO2的三种掺杂模型(x=0.0625, 0.125, 0.1875), 掺杂体系具有高电导率、高载流子密度和宽带隙的n型金属特征。随着掺杂浓度的增加, 掺杂体系的带隙增加,电导率降低。Mo掺杂后, 可见光区域的高透射性得以保留。特别地, 在x=0.0625时实现了Mo掺杂SnO2的最佳电导率和光学性能。
Abstract
The band structure, electronic conductivity, absorptivity and reflectivity of molybdenum (Mo)-doped SnO2 under different doping concentrations were investigated by first-principles based on density functional theory (DFT). Three doping models of MoxSn1-xO2(x=0.0625,0.125,0.1875) were built, the doping system exhibits n-type metallic characters with high conductivity, high charge carrier density and wide bandgap. As the doping concentration increases, the bandgap increases and the electronic conductivity decreases. The transmittance in the visible region is still reserved after doping. Particularly, the optimal electronic conductivity and photoelectric properties of Mo-doped SnO2 achieves at x=0.0625.
参考文献

[1] Xiong L B, Qin M C, Chen C, et al. Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells[J]. Adv. Functional Mater., 2018, 28(10): 1706276.

[2] Lavanya N, Sekar C, Fazio E, et al. Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications[J]. Inter. J. of Hydrogen Energy, 2017, 42(15): 10645-10655.

[3] Haddad N, Ayadi Z B, Mahdhi H, et al. Influence of fluorine doping on the microstructure, optical and electrical properties of SnO2 nanoparticles[J]. J. of Mater. Science: Materials in Electron., 2017, 28(20): 15457-15465.

[4] Ren X D, Yang D, Yang Z, et al. Solution-processed Nb∶SnO2 electron transport layer for efficient planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2421-2429.

[5] Bai Y, Fang Y J, Deng Y H, et al. Low temperature solution-processed Sb∶SnO2 nanocrystals for efficient planar perovskite solar cells[J]. Chem. Sus. Chem., 2016, 9(18): 2686-2691.

[6] Muto Y, Nakatomi S, Oka N, et al. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn-Ta metal-sintered target[J]. Thin Solid Films, 2012, 520(10): 3746-3750.

[7] Nguyen N M, Luu M Q, Nguyen M H, et al. Synthesis of tantalum-doped tin oxide thin films by magnetron sputtering for photovoltaic applications[J]. J. of Electronic Materials, 2017, 46(6): 3667-3673.

[8] He L N, Luan C N, Feng X J, et al. Effect of niobium doping on the structural, electrical and optical properties of epitaxial SnO2 films on MgF2 (110) substrates by MOCVD[J]. J. of Alloys and Compounds, 2018, 741: 677-681.

[9] Parthiban S, Elangovan E, Ramamurthi K, et al. Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique[J]. Solar Energy Materials and Solar Cells, 2010, 94(3): 406-412.

[10] Slassi A. Ab initio study on the structural, electronic, optical and electrical properties of Mo-, Nb- and Ta-doped rutile SnO2[J]. Opt. Quant. Electron., 2016, 48: 160.

[11] Turgut G, Sonmez E. Synthesis and characterization of Mo doped SnO2 thin films with spray pyrolysis[J]. Superlattices and Microstructures, 2014, 69: 175-186.

[12] Huo X X, Jiang S L, Liu P, et al. Molybdenum and tungsten doped SnO2 transparent conductive thin films with broadband high transmittance between the visible and near-infrared regions[J]. Cryst. Eng. Comm, 2017, 19(30): 4413-4423.

[13] Zhao Y F, Liu Z X, Yang H Y, et al. Approach using the electrical structure and optical properties of aluminium-doped zinc oxide for solar cells[J]. RSC Adv., 2016, 6(112): 110943-110950.

[14] Chen C Z, Wen N Y, Chen H J, et al. Enhanced conductivity and high thermal stability of W-doped SnO2 based on first-principle calculations[J]. Brazilian J. of Physics, 2016, 47(1): 26-33.

[15] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. of Physics: Condensed Matter, 2002, 14(11): 2717-2744.

[16] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B, 1981, 23(10): 5048-5079.

[17] Kim K H, Lee S W, Shin D W, et al. Effect of antimony addition on electrical and optical properties of tin oxide film[J]. J. of the American Ceramic Society, 1994, 77(4): 915-921.

[18] Sorescu M, Diamandescu L, Tarabasanu-Mihaila D, et al. Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing pathways[J]. J. of Mater. Science, 2004, 39(2): 675-677.

[19] Zhou W, Liu L J, Yuan M Y, et al. Electronic and optical properties of W-doped SnO2 from first-principles calculations[J]. Computational Materials Science, 2012, 54: 109-114.

[20] Svane A, Antoncik E. Electronic structure of rutile SnO2, GeO2 and TeO2[J]. J. of Physics & Chemistry of Solids,1987, 48(2): 171-180.

[21] Behtash M, Joo P H, Nazir S, et al. Electronic structures and formation energies of pentavalent-ion-doped SnO2: First-principles hybrid functional calculations[J]. J. of Appl. Phys., 2015, 117(17): 15.

[22] Singh A K, Janotti A, Scheffler M, et al. Sources of electrical conductivity in SnO2[J]. Phys. Rev. Lett., 2008, 101(5): 055502.

许春辉, 杨平. Mo掺杂SnO2光电特性的第一性原理研究[J]. 半导体光电, 2019, 40(4): 534. XU Chunhui, YANG Ping. Study on Photoelectric Characteristics of Mo-doped SnO2 with First-Principles[J]. Semiconductor Optoelectronics, 2019, 40(4): 534.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!