发光学报, 2017, 38 (8): 1010, 网络出版: 2017-08-30   

Eu掺杂SiCxOy薄膜的Eu3+发光机制

Excitation Mechanism of Eu3+ Photoluminescence from Eu Doped Silicon Oxycarbide Film
作者单位
1 太原理工大学 物理与光电工程学院, 山西 太原030006
2 韩山师范学院 材料科学与工程学院, 广东 潮州521041
摘要
利用磁控溅射技术在低温250 ℃下制备Eu掺杂SiCxOy薄膜, 研究薄膜的Eu3+发光激发机制。实验结果表明, 薄膜的发光谱由来自基体材料的蓝光和来自Eu3+的红光组成; 随着薄膜中Eu含量由0.19%增加到2.27%, 其红光强度增加3倍左右, 而蓝光逐渐减弱。Raman光谱及荧光瞬态谱分析表明, 其蓝光由中立氧空位缺陷发光中心引起。结合薄膜的Eu3+激发光谱分析, SiCxOy∶Eu薄膜的红光增强源于薄膜中Eu3+离子浓度的增加和/或基体材料的中立氧空位缺陷发光中心与Eu3+离子的能量转移。
Abstract
Eu doped silicon oxycarbide (SiCxOy∶Eu) films were fabricated by magnetron sputtering at a low temperature of 250 ℃. The excitation mechanism of Eu3+ photoluminescence (PL) from SiCxOy∶Eu was investigated. The spectra of all the SiCxOy∶Eu films contain two PL bands: the blue band originated from the host matrix and Eu3+ red PL band. With the increasing of the content of Eu from 0.19% to 2.27%, the red PL intensity is enhanced more than three times, while the blue PL intensity gradually decreases. The analysis results of Rama spectra and time-resolved PL show that the blue PL mainly originates from neutral oxygen vacancy (NOV) defect centers in the SiCxOy matrix. Combining with the PLE results, the enhanced red light emission is suggested from the increased concentration of Eu3+ ions and/or the energy transfer between the NOV defect centers and optically active Eu3+ ions.
参考文献

[1] SUN J M, SKORUPA W, DEKORSY T, et al.. Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices [J]. J. Appl. Phys., 2005, 97(12):123513-1-7.

[2] HUANG R, SONG J, WANG X, et al.. Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride [J]. Opt. Lett., 2012, 37(4):692-694.

[3] XU K K, YU Q, LI G. Increased efficiency of silicon light-emitting device in standard Si-CMOS technology [J]. IEEE J. Quantum. Electron., 2015, 51(8):3000106-1-6.

[4] LIN S B, ZHANG X W, ZHANG P, et al.. High-efficiency near-infrared emission from bismuth-doped SiO0.73 thin films fabricated by ion implantation technology [J]. Opt. Lett., 2016, 41(3):630-633.

[5] SUGIMOTO H, ZHANG R, REINHARD B M, et al.. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering [J]. Appl. Phys. Lett., 2015, 107(4):041111-1-4.

[6] WANG X, HUANG R, SONG C, et al.. Effect of barrier layers on electroluminescence from Si/SiOxNy multilayer structures [J]. Appl. Phys. Lett., 2013, 102(8):081114-1-4.

[7] XU L B, JIN L, LI D S, et al.. Effects of excess silicon on the 1 540 nm Er3+ luminescence in silicon rich oxynitride films [J]. Appl. Phys. Lett., 2013, 103(7):071101-1-4.

[8] NAZAROV A N, TIAGULSKYI S I, TYAGULSKYY I P, et al.. The effect of rare-earth clustering on charge trapping and electroluminescence in rare-earth implanted metal-oxide-semiconductor light-emitting devices [J]. J. Appl. Phys., 2010, 107(12):123112-1-14.

[9] XU L B, JIN L, LI D S, et al.. Sensitization of Er3+ ions in silicon rich oxynitride films: effect of thermal treatments [J]. Opt. Express, 2014, 22(11):13022-13028.

[10] 王兴军, 周治平. 硅基光电集成用铒硅酸盐化合物光源材料和器件的研究进展 [J]. 中国光学, 2014, 7(2): 274-280.

    WANG X J, ZHOU Z P. Research progress of Er silicate compound light source materials and devices for silicon photonics application [J]. Chin. Opt., 2014, 7(2):274-280. (in Chinese)

[11] REBOHLE L, LEHMANN J, PRUCNAL S, et al.. Blue and red electroluminescence of europium-implanted metal-oxide-semiconductor structures as a probe for the dynamics of microstructure [J]. Appl. Phys. Lett., 2008, 93(7):071908-1-3.

[12] BELLOCCHI G, FRANZ G, MIRITELLO M, et al.. White light emission from Eu-doped SiOC films [J]. Appl. Phys. Express, 2013, 7(1):012601-1-3.

[13] PRUCNAL S, SUN J M, SKORUPA W, et al.. Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu [J]. Appl. Phys. Lett., 2007, 90(18):181121-1-3.

[14] BREGOLIN F L, SIAS U S, BEHAR M. Photoluminescence and structural studies of Tb and Eu implanted at high temperatures into SiO2 films [J]. J. Lumin., 2013, 135:232-238.

[15] BONINELLI S, BELLOCCHI G, FRANZ G, et al.. New strategies to improve the luminescence efficiency of Eu ions embedded in Si-based matrices [J]. J. Appl. Phys., 2013, 113(14):143503-1-8.

[16] BELLOCCHI G, IACONA F, MIRITELLO M, et al.. SiOC thin films: an efficient light source and an ideal host matrix for Eu2+ ions [J]. Opt. Express, 2013, 21(17):20280-20290.

[17] LIN Z X, HUANG R, WANG H P, et al.. Dense nanosized europium silicate clusters induced light emission enhancement in Eu-doped silicon oxycarbide films [J]. J. Alloys Compd., 2017, 694:946-951.

[18] SONG D Y, CHO E C, CHO Y H, et al.. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix [J]. Thin Solid Films, 2008, 516(12):3824-3830.

[19] ZHANG H T, XU Z Y. Structural and optical properties of four-hexagonal polytype nanocrystalline silicon carbide films deposited by plasma enhanced chemical vapor deposition technique [J]. Thin Solid Films, 2004, 446(1):99-105.

[20] HUANG R, LIN Z W, GUO Y Q, et al.. Bright red, orange-yellow and white switching photoluminescence from silicon oxynitride films with fast decay dynamics [J]. Opt. Mater. Express, 2014, 4(2):205-212.

[21] LIN Z X, GUO Y Q, SONG J, et al.. Effect of thermal annealing on the blue luminescence of amorphous silicon oxycarbide films [J]. J. Non-Cryst. Solids, 2015, 428:184-188.

王岩, 林圳旭, 宋捷, 张文星, 王怀佩, 郭艳青, 李洪亮, 宋超, 黄锐. Eu掺杂SiCxOy薄膜的Eu3+发光机制[J]. 发光学报, 2017, 38(8): 1010. WANG Yan, LIN Zhen-xu, SONG Jie, ZHANG Wen-xing, WANG Huai-pei, GUO Yan-qing, LI Hong-liang, SONG Chao, HUANG Rui. Excitation Mechanism of Eu3+ Photoluminescence from Eu Doped Silicon Oxycarbide Film[J]. Chinese Journal of Luminescence, 2017, 38(8): 1010.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!