光子学报, 2019, 48 (9): 0914002, 网络出版: 2019-10-12   

高功率半导体激光器低温特性分析

Analysis of Cryogenic Characteristics of High Power Semiconductor Lasers
作者单位
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
2 中国科学院大学, 北京 100049
3 西安工程大学 机电工程学院, 西安 710600
摘要
研制了一套微通道封装结构半导体激光器的低温测试表征系统, 实现了对高功率半导体激光器在-60℃~0℃低温范围内的输出功率、电光转换效率和光谱等关键参数稳定可靠的测试表征. 采用计算流体力学及数值传热学方法, 模拟了无水乙醇、三氯乙烯以及五氟丙烷三种载冷剂的散热性能. 模拟结果表明, 压降均为0.47 bar时, 采用无水乙醇作载冷剂的器件具有最低的热阻(热阻为0.73 K/W)和最好的温度均匀性(中心和边缘发光单元温差为1.45℃). 低温测试表征系统采用无水乙醇作为载冷剂, 最大可实现0.5 L/min的载冷液体流量, 最多能容纳5个半导体激光器巴条同时工作. 基于该低温测试表征系统, 对微通道封装结构976 nm半导体激光器巴条在6%占空比下的低温特性进行了研究. 测试结果表明, 载冷剂温度由0℃下降到-60℃, 半导体激光器的输出功率由388.37 W提升到458.37 W, 功率提升比为18.02%; 电光转换效率由60.99%提升到67.25%, 效率提升幅度为6.26%; 中心波长由969.68 nm蓝移到954.05 nm. 器件开启电压增加0.04 V, 阈值电流降低3.93 A, 串联电阻增加0.18 mΩ, 外微分量子效率提高11.84%. 分析表明, 阈值电流的减小及外微分量子效率的提高, 是促使半导体激光器在低温下功率、效率提升的主要因素. 研究表明, 采用液体微通道冷却的低温工作方式, 是实现半导体激光器高输出功率、高电光转换效率的一种有效手段.
Abstract
A set of cryogenic measurement system for semiconductor lasers with microchannel structure was developed. The stable measurement of some vital parameters such as output power, electrooptic conversion efficiency and spectra of high power semiconductor lasers in the range from -60℃ to 0℃ were realized. Based on computational fluid dynamics and numerical heat transfer methods, the heat dissipation performance of three cryogenic coolants, anhydrous ethanol, trichloroethylene and pentafluoropropane was simulated. The simulation results show that semiconductor laser bar with anhydrous ethanol as the coolant has the smallest thermal resistance(0.73 K/W) and the best temperature uniformity(temperature difference between emitters is 1.45℃) when the pressure drop is 0.47 bar. Anhydrous ethanol was used as system coolant, the maximum of ethanol flow rate was up to 0.5 L/min, and 5 semiconductor laser bars could work simultaneously in the system. Based on the cryogenic measurement system, the cryogenic characteristics of 976 nm semiconductor laser bar with microchannel structure at 6% duty cycle were investigated. The experimental results show that the output power of semiconductor laser bar is increased from 388.37 W to 458.37 W which the powerup ratio is 18.02%, the electrooptic conversion efficiency is increased from 60.99% to 67.25%, the efficiency is increased by 6.26%, and the central wavelength is shifted from 969.68 nm to 954.05 nm when the coolant temperature decreases from 0℃ to -60℃. The turnon voltage increases by 0.04 V, the threshold current decreases by 3.93 A, the series resistance increases by 0.18 mΩ, and the external differential efficiency increases by 11.84%. The analysis shows that the decrease of threshold current and the improvement of external differential efficiency are the main factors that promote the power and efficiency of semiconductor lasers at low temperature. This investigation shows that the cryogenic working mode of liquid microchannel cooling is an effective means to achieve high output power and high electrooptic conversion efficiency of semiconductor lasers.
参考文献

[1] 王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 119.

    WANG Lijun, NING Yongqiang, QIN Li, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 119.

[2] 王立军,彭航宇,张 俊,等. 高功率高亮度半导体激光器合束进展[J]. 红外与激光工程, 2017, 46(4): 0401001.

    WANG Lijun,PENG Hangyu,ZHANG Jun,et al. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 2017, 46(4): 0401001.

[3] 李建林, 雷广智, 白杨, 等. 电光MoSe2主被动双调Q 946 nm全固态激光器[J]. 光子学报, 2018, 47(5): 0514002.

    LI Jianlin, LEI Guangzhi, BAI Yang, et al. Activepassive double Qswitched 946 nm laser with MgO: LiNbO3 electrooptic crystaland Mose2 saturable absorber[J]. Acta Photonica Sinica, 2018, 47(5): 0514002.

[4] 刘兴胜, 王警卫, 张恩涛, 等. 大功率半导体激光器封装技术发展趋势及面临的挑战[J]. 红外与激光工程, 2009, 38(增刊): 490497.

    LIU Xingsheng, WANG Jingwei, ZHANG Entao, et al. Technology trend and challenges in high power semiconductor laser packaging[J]. Infrared and Laser Engineering, 2009, 38(Supplement): 490497.

[5] 王狮凌, 房丰洲. 大功率激光器及其发展[J]. 激光与光电子学进展, 2017, 54(9): 4558.

    WANG Shiling, FANG Fengzhou. High power laser and it’s development[J]. Laser & Optoelectronics Progress, 2017, 54(9): 4558.

[6] 王淑娜, 张普, 熊玲玲, 等. 温度对高功率半导体激光器阵列“smile”的影响[J]. 光子学报, 2016, 45(5): 0514001.

    WANG Shuna, ZHANG Pu, XIONG Lingling, et al. Influence of temperature on “smile” in high power diode laser bars[J]. Acta Photonica Sinica, 2016, 45(5): 0514001.

[7] 廖翌如, 关宝璐, 李建军, 等. 低阈值852 nm半导体激光器的温度特性[J]. 发光学报, 2017, 38(3): 331337.

    LIAO Yiru, GUAN Baolu, LI Jianjun, et al. Thermal characteristics of the low threshold 852 nm semiconductor lasers[J]. Chinese Journal of Luminescence, 2017, 38(3): 331337.

[8] 薛正群, 王凌华, 苏辉. 温度对InP激光器波长蓝移影响的分析[J]. 光子学报, 2018, 47(1): 0125002.

    XUE Zhengqun, WANG Linghua, SU Hui. Analysis the influence of temperature on the wavelength blue shift of InP laser[J]. Acta Photonica Sinica, 2018, 47(1): 0125002.

[9] CRUMP P, WANG J, PATTERSON S, et al. Diode laser efficiency increases enable >400W peak power from 1cm bars and show a clear path to peak powers in excess of 1kW[C]. SPIE, 2006, 6104: 610409.

[10] CRUMP P, ERBERT G, WENZEL H, et al. Efficient highpower laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1501211.

[11] MERCADO E, ADHIKARI D, SMOLYAKOV G A, et al. Lowtemperature characterization of a 1.55μm multiplequantumwell laser down to 10 K[C]. SPIE, 2013, 8619: 861913.

[12] FREVERT C, CRUMP P, WENZEL H, et al. Efficiency optimization of high power diode lasers at low temperatures[C]. IEEE CLEO, 2013.

[13] FREVERT C, CRUMP P, BUGGE F, et al. Lowtemperature optimized 940 nm diode laser bars with 1.98 kW peak power at 203 K[C]. IEEE CLEO, 2015.

[14] 宋云菲, 王贞福, 李特, 等. 808nm半导体激光芯片电光转换效率的温度特性机理研究[J]. 物理学报, 2017, 66(10): 104202.

    SONG Yunfei, WANG Zhenfu, LI Te, et al. Efficiency analysis of 808 nm laser diode array under different operating temperatures[J]. Acta Physica Sinica, 2017, 66(10): 104202.

[15] WU Dihai, ZHANG Pu, NIE Zhiqiang, et al. Optimization of microchannel cooler of high power diode laser array package[C]. SPIE, 2017, 10085: 100850I.

[16] ZHANG Pu, KIM D S, HAN B. Deconvolution of spectral power distribution of highpower laser diode arrays[J]. Applied Optics, 2017, 56(20): 55905598.

王明培, 张普, 聂志强, 刘晖, 孙玉博, 吴的海, 赵宇亮. 高功率半导体激光器低温特性分析[J]. 光子学报, 2019, 48(9): 0914002. WANG Mingpei, ZHANG Pu, NIE Zhiqiang, LIU Hui, SUN Yubo, WU Dihai, ZHAO Yuliang. Analysis of Cryogenic Characteristics of High Power Semiconductor Lasers[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0914002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!