Photonics Research, 2019, 7 (11): 11000B73, Published Online: Oct. 28, 2019  

Scanning electron microscopy as a flexible technique for investigating the properties of UV-emitting nitride semiconductor thin films Download: 807次

Author Affiliations
1 Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
2 Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
3 Institute of Solid State Physics, Technische Universität Berlin, 10623 Berlin, Germany
4 Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
5 Department of Electronic and Electrical Engineering, Centre of Nanoscience & Nanotechnology, University of Bath, Bath BA2 7AY, UK
6 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK
7 Laser Components Department, Laser Zentrum Hannover e.V., 30419 Hannover, Germany
Copy Citation Text

C. Trager-Cowan, A. Alasmari, W. Avis, J. Bruckbauer, P. R. Edwards, B. Hourahine, S. Kraeusel, G. Kusch, R. Johnston, G. Naresh-Kumar, R. W. Martin, M. Nouf-Allehiani, E. Pascal, L. Spasevski, D. Thomson, S. Vespucci, P. J. Parbrook, M. D. Smith, J. Enslin, F. Mehnke, M. Kneissl, C. Kuhn, T. Wernicke, S. Hagedorn, A. Knauer, V. Kueller, S. Walde, M. Weyers, P.-M. Coulon, P. A. Shields, Y. Zhang, L. Jiu, Y. Gong, R. M. Smith, T. Wang, A. Winkelmann. Scanning electron microscopy as a flexible technique for investigating the properties of UV-emitting nitride semiconductor thin films[J]. Photonics Research, 2019, 7(11): 11000B73.

References

[1] HoltD. B.JoyD. C., SEM Microcharacterization of Semiconductors (Academic, 1989).

[2] GoldsteinJ.NewburyD.JoyD.LymanC.EchlinP.LifshinE.SawyerL.MichaelJ., Scanning Electron Microscopy and X-ray Microanalysis (Springer, 2007).

[3] ReimerL., Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, 1998).

[4] ZhouW.WangZ. L., Scanning Microscopy for Nanotechnology: Techniques and Applications (Springer, 2007).

[5] SchwartzA. J.KumarM.AdamsB. L.FieldD. P., Electron Backscatter Diffraction in Materials Science (Springer, 2009).

[6] A. J. Wilkinson, P. B. Hirsch. Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron, 1997, 28: 279-308.

[7] A. J. Wilkinson, T. B. Britton. Strains, planes, and EBSD in materials science. Mater. Today, 2012, 15: 366-376.

[8] C. Trager-Cowan, F. Sweeney, P. W. Trimby, A. P. Day, A. Gholinia, N.-H. Schmidt, P. J. Parbrook, A. J. Wilkinson, I. M. Watson. Electron backscatter diffraction and electron channeling contrast imaging of tilt and dislocations in nitride thin films. Phys. Rev. B, 2007, 75: 085301.

[9] M. A. Crimp, B. A. Simkin, B. C. Ng. Demonstration of the g·bxu=0 edge dislocation invisibility criterion for electron channelling contrast imaging. Philos. Mag. Lett., 2001, 81: 833-837.

[10] Y. Picard, R. Kamaladasa, M. De Graef, N. Nuhfer, W. Mershon, T. Owens, L. Sedlacek, F. Lopour. Future prospects for defect and strain analysis in the SEM via electron channeling. Microsc. Today, 2012, 20: 12-16.

[11] G. Naresh-Kumar, B. Hourahine, P. R. Edwards, A. P. Day, A. Winkelmann, A. J. Wilkinson, P. J. Parbrook, G. England, C. Trager-Cowan. Rapid nondestructive analysis of threading dislocations in wurtzite materials using the scanning electron microscope. Phys. Rev. Lett., 2012, 108: 135503.

[12] S. Zaefferer, N. N. Elhami. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater., 2014, 75: 20-50.

[13] J. I. Deitz, S. D. Carnevale, S. A. Ringel, D. W. McComb, T. J. Grassman. Electron channeling contrast imaging for rapid III-V heteroepitaxial characterization. J. Vis. Exp., 2015, 101: e52745.

[14] G. Naresh-Kumar, D. Thomson, M. Nouf-Allehiani, J. Bruckbauer, P. R. Edwards, B. Hourahine, R. W. Martin, C. Trager-Cowan. Electron channelling contrast imaging for III-nitride thin film structures. Mater. Sci. Semicond. Process., 2016, 47: 44-50.

[15] YacobiB. G.HoltD. B., Cathodoluminescence Microscopy of Inorganic Solids (Plenum, 1990).

[16] P. R. Edwards, R. W. Martin. Cathodoluminescence nano-characterization of semiconductors. Semicond. Sci. Technol., 2011, 26: 064005.

[17] E. B. Yakimov. Investigation of electrical and optical properties in semiconductor structures via SEM techniques with high spatial resolution. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2012, 6: 887-889.

[18] https://www.ifkp.tu-berlin.de/fileadmin/i1/Kneissl/EQE_20181120.pdf.

[19] J. S. Park, J. K. Kim, J. Cho, T. Y. Seong. Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency. ECS J. Solid State Sci. Technol., 2017, 6: Q42-Q52.

[20] A. J. Wilkinson, G. Meaden, D. J. Dingley. High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy, 2006, 106: 307-313.

[21] G. Naresh-Kumar, A. Vilalta-Clemente, H. Jussila, A. Winkelmann, G. Nolze, S. Vespucci, S. Nagarajan, A. J. Wilkinson, C. Trager-Cowan. Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction. Sci. Rep., 2017, 7: 10916.

[22] WinkelmannA.NolzeG.HimmerlichM.LebedevV.ReichmannA., “Point-group sensitive orientation mapping using EBSD,” in Proceedings of the 6th International Conference on Recrystallization and Grain Growth, HolmE. A.FarjamiS.ManoharP.RohrerG.RollettA. D.SrolovitzD.WeilandH., eds. (Springer, 2016), pp. 281286.

[23] G. Naresh-Kumar, C. Mauder, K. R. Wang, S. Kraeusel, J. Bruckbauer, P. R. Edwards, B. Hourahine, H. Kalisch, A. Vescan, C. Giesen, M. Heuken. Electron channeling contrast imaging studies of nonpolar nitrides using a scanning electron microscope. Appl. Phys. Lett., 2013, 102: 142103.

[24] S. D. Carnevale, J. I. Deitz, J. A. Carlin, Y. N. Picard, M. De Graef, S. A. Ringel, T. J. Grassman. Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging. Appl. Phys. Lett., 2014, 104: 232111.

[25] J. K. Hite, M. A. Mastro, C. R. Eddy. Approach for dislocation free GaN epitaxy. J. Cryst. Growth, 2010, 312: 3143-3146.

[26] A. Schulze, L. Strakos, T. Vystavel, R. Loo, A. Pacco, N. Collaert, W. Vandervost, M. Caymax. Non-destructive characterization of extended crystalline defects in confined semiconductor device structures. Nanoscale, 2018, 10: 7058-7066.

[27] P. G. Callahan, B. B. Haidet, D. Jung, G. G. Seward, K. Mukherjee. Direct observation of recombination-enhanced dislocation glide in heteroepitaxial GaAs on silicon. Phys. Rev. Mater., 2018, 2: 081601.

[28] K. N. Yaung, S. Kirnstoetter, J. Faucher, A. Gerger, A. Lochtefeld, A. Barnett, L. L. Minjoo. Threading dislocation density characterization in III-V photovoltaic materials by electron channeling contrast imaging. J. Cryst. Growth, 2016, 453: 65-70.

[29] H. G. J. Moseley. The high-frequency spectra of the elements. Philos. Mag., 1914, 27: 703-713.

[30] J. J. Friel, C. E. Lyman. X-ray mapping in electron-beam instruments. Microsc. Microanal., 2006, 12: 2-5.

[31] G. Kusch, M. Nouf-Allehiani, F. Mehnke, C. Kuhn, P. R. Edwards, T. Wernicke, A. Knauer, V. Kueller, G. Naresh-Kumar, M. Weyers, M. Kneissl. Spatial clustering of defect luminescence centers in Si-doped low resistivity Al0.82Ga0. 18N. Appl. Phys. Lett., 2015, 107: 072103.

[32] G. Naresh-Kumar, J. Bruckbauer, P. R. Edwards, S. Kraeusel, B. Hourahine, R. W. Martin, M. J. Kappers, M. A. Moram, S. Loveloc, R. A. Oliver, C. J. Humphreys. Coincident electron channeling and cathodoluminescence studies of threading dislocations in GaN. Microsc. Microanal., 2014, 20: 55-60.

[33] J. Bruckbauer, P. R. Edwards, T. Wang, R. W. Martin. High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures. Appl. Phys. Lett., 2011, 98: 141908.

[34] C. E. Norman. Challenging the spatial resolution limits of CL and EBIC. Solid State Phenom., 2001, 78: 19-28.

[35] J. Christen, M. Grundmann, D. Bimberg. Scanning cathodoluminescence microscopy—a unique approach to atomic-scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities. J. Vac. Sci. Technol. B, 1991, 9: 2358-2368.

[36] G. Kusch, H. Li, P. R. Edwards, J. Bruckbauer, P. J. Parbrook, R. W. Martin. Influence of substrate miscut angle on surface morphology and luminescence properties of AlGaN. Appl. Phys. Lett., 2014, 104: 092114.

[37] M. D. Smith, D. Thomson, V. Z. Zubialevich, H. Li, G. Naresh-Kumar, C. Trager-Cowan, P. J. Parbrook. Nanoscale fissure formation in AlxGa1–xN/GaN heterostructures and their influence on ohmic contact formation. Phys. Status Solidi A, 2017, 214: 1600353.

[38] E. Pascal, B. Hourahine, G. Naresh-Kumar, K. Mingard, C. Trager-Cowan. Dislocation contrast in electron channelling contrast images as projections of strain-like components. Mater. Today, 2018, 5: 14652-14661.

[39] A. P. Day, T. E. Quested. A comparison of grain imaging and measurement using horizontal orientation and colour orientation contrast imaging, electron backscatter pattern and optical methods. J. Microsc., 1999, 195: 186-196.

[40] R. J. Kamaladasa, F. Liu, L. M. Porter, R. F. Davis, D. D. Koleske, G. Mulholland, K. A. Jones, Y. N. Picard. Identifying threading dislocations in GaN films and substrates by electron channeling. J. Microsc., 2011, 244: 311-319.

[41] P. M. Coulon, G. Kusch, P. Fletcher, P. Chausse, R. W. Martin, P. Shields. Hybrid top-down/bottom-up fabrication of a highly uniform and organized faceted AlN nanorod scaffold. Materials, 2018, 11: 1140.

[42] CoulonP. M.DamilanoB.AlloingB.ChausseP.WaldeS.EnslinJ.ArmstrongR.VézianS.HagedornS.WernickeT.MassiesJ.Zúñiga‐PérezJ.WeyersM.KneisslM.ShieldsP. A., “Displacement Talbot lithography for nano-engineering of III-nitride materials,” Microsyst. Nanoeng., Accepted/In press (2019).

[43] S. Hagedorn, A. Knauer, A. Mogilatenko, E. Richter, M. Weyers. AlN growth on nano-patterned sapphire: a route for cost efficient pseudo substrates for deep UV LEDs. Phys. Status Solidi A, 2016, 213: 3178-3185.

[44] M. Kneissl, T. Y. Seong, J. Han, H. Amano. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics., 2019, 13: 233-244.

[45] V. Potin, P. Ruterana, G. Nouet, R. C. Pond, H. Morkoç. Mosaic growth of GaN on (0001) sapphire: a high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries. Phys. Rev. B, 2000, 61: 5587-5599.

[46] S. I. Wright, M. M. Nowell, D. P. Field. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal., 2011, 17: 316-329.

[47] F. Bachmann, R. Hielscher, H. Schaeben. Texture analysis with MTEX–free and open source software toolbox. Solid State Phenom., 2010, 160: 63-68.

[48] A. Winkelmann, C. Trager-Cowan, F. Sweeney, A. P. Day, P. J. Parbrook. Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy, 2007, 107: 414-421.

[49] N. Mante, S. Rennesson, E. Frayssinet, L. Largeau, F. Semond, J. L. Rouviere, G. Feuillet, P. Vennéguès. Proposition of a model elucidating the AlN-on-Si (111) microstructure. J. Appl. Phys., 2018, 123: 215701.

[50] R. Mantach, P. Vennéguès, J. Z. Perez, P. De Mierry, M. Leroux, M. Portail, G. Feuillet. Semipolar (10-11) GaN growth on silicon-on-insulator substrates: defect reduction and meltback etching suppression. J. Appl. Phys., 2019, 125: 035703.

[51] B. Leung, D. Wang, Y. S. Kuo, J. Han. Complete orientational access for semipolar GaN devices on sapphire. Phys. Status Solidi B, 2016, 253: 23-35.

[52] F. Scholz. Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol., 2012, 27: 024002.

[53] Y. Zhang, J. Bai, Y. Hou, X. Yu, Y. Gong, R. M. Smith, T. Wang. Microstructure investigation of semi-polar (11-22) GaN overgrown on differently designed micro-rod array templates. Appl. Phys. Lett., 2016, 109: 241906.

[54] J. Bruckbauer, Z. Li, G. Naresh-Kumar, M. Warzecha, P. R. Edwards, L. Jiu, Y. Gong, J. Bai, T. Wang, C. Trager-Cowan, R. W. Martin. Spatially-resolved optical and structural properties of semi-polar (11-22) AlxGa1–xN with x up to 0.56. Sci. Rep., 2017, 7: 10804.

[55] K. P. Korona, P. P. Paskov, A. Reszka, R. Schifano, M. Sobanska, B. Monemar, T. Paskova, P. S. Perkowska, S. Figge, A. Wysmołek, D. Hommel, K. Klosek, Z. R. Zytkiewicz. Dynamics of stacking faults luminescence in GaN/Si nanowires. J. Lumin., 2014, 155: 293-297.

    . Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition. J. Appl. Phys., 2005, 98: 093519.

[57] J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, H. T. Grahn. Luminescence associated with stacking faults in GaN. J. Phys. D, 2014, 47: 423001.

[58] G. Naresh-Kumar, D. Thomson, Y. Zhang, J. Bai, L. Jiu, X. Yu, Y. P. Gong, R. M. Smith, T. Wang, C. Trager-Cowan. Imaging basal plane stacking faults and dislocations in (11-22) GaN using electron channelling contrast imaging. J. Appl. Phys., 2018, 124: 065301.

[59] I. Bryan, A. Mogilatenko, Z. Bryan, V. Küller, A. Knauer, S. Mita, J. Jeschke, A. Rice, U. Zeimer, L. Hussey, M. Weyers, C. Shelton, G. Tränkle, J. Tweedie, J. P. Maria, R. Collazo, Z. Sitar. The role of surface kinetics on composition and quality of AlGaN. J. Cryst. Growth, 2016, 451: 65-71.

    . Defect analysis in AlGaN layers on AlN templates obtained by epitaxial lateral overgrowth. J. Cryst. Growth, 2014, 402: 222-229.

[61] I. Bryan, Z. Bryan, S. Mita, A. Rice, J. Tweedie, R. Collazo, Z. Sitar. Surface kinetics in AlN growth: a universal model for the control of surface morphology in III-nitrides. J. Cryst. Growth, 2016, 438: 81-89.

[62] L. Schade, T. Wernicke, J. Raß, S. Ploch, M. Weyers, M. Kneissl, U. T. Schwarz. Surface topology caused by dislocations in polar, semipolar, and nonpolar InGaN/GaN heterostructures. Phys. Status Solidi A, 2014, 211: 756-760.

[63] G. Kusch, F. Mehnke, J. Enslin, P. R. Edwards, T. Wernicke, M. Kneissl, R. W. Martin. Analysis of doping concentration and composition in wide bandgap AlGaN: Si by wavelength dispersive x-ray spectroscopy. Semicond. Sci. Technol., 2017, 32: 035020.

[64] Y. Kubo, H. Kotaro, U. Akira. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis. Ultramicroscopy, 2013, 135: 64-70.

[65] D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin. CASINO V2. 42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 2007, 29: 92-101.

[66] https://doi.org/10.15129/b5238863-a088-4f30-8b13-2625260eb73a.

C. Trager-Cowan, A. Alasmari, W. Avis, J. Bruckbauer, P. R. Edwards, B. Hourahine, S. Kraeusel, G. Kusch, R. Johnston, G. Naresh-Kumar, R. W. Martin, M. Nouf-Allehiani, E. Pascal, L. Spasevski, D. Thomson, S. Vespucci, P. J. Parbrook, M. D. Smith, J. Enslin, F. Mehnke, M. Kneissl, C. Kuhn, T. Wernicke, S. Hagedorn, A. Knauer, V. Kueller, S. Walde, M. Weyers, P.-M. Coulon, P. A. Shields, Y. Zhang, L. Jiu, Y. Gong, R. M. Smith, T. Wang, A. Winkelmann. Scanning electron microscopy as a flexible technique for investigating the properties of UV-emitting nitride semiconductor thin films[J]. Photonics Research, 2019, 7(11): 11000B73.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!